Very few studies have been conducted concerning fatigue in steel line pipe and fewer using full-scale testing. Further, at the time of this study, no research on full-scale testing was available in open literature regarding fatigue behavior of line pipe with longitudinal cracks, despite being considered more critical than the line pipe with cracks oriented in the circumferential direction. In the current research work, fatigue crack growth was investigated in NPS 20, API 5L X-70 grade, electrical resistance welding (ERW) straight-seam steel line pipes in the base metal and at the weld seam for various orientations. It was found that there was no significant difference between fatigue crack growth in the base metal and at the weld seam for the tested stress ratio. Increasing the angle of inclination of the crack with respect to the weld line was found to decrease the rate of fatigue crack growth due to a decrease in the mode I stress component. Finally, it was observed that despite the difference in fatigue crack growth rates, the crack aspect ratios were nearly identical for all cracks at the same crack depth.

References

1.
Rosenfeld
,
M. J.
, and
Kiefner
,
J. F.
,
2006
,
Basics of Metal Fatigue in Natural Gas Pipeline Systems–A Primer for Gas Pipeline Operators
,
Pipeline Research Council International
,
Houston, TX
.
2.
TSB
,
2001
, “
Pipeline Investigation Report P01H004
,” Transportation Safety Board of Canada, Ottawa, ON, Canada, Report No. P11H0011.
3.
NTSB
,
2004
, “
Rupture of Enbridge Pipeline and Release of Crude Oil Near Cohasset, Minnesota
,”
National Transportation Safety Board
,
Washington, DC
,
Report No. NTSB/PAR-04/01
.
4.
NTSB
,
2010
, “
Enbridge Incorporated Hazardous Liquid Pipeline Rupture and Release, Marshall, Michigan
,”
National Transportation Safety Board
,
Washington, DC
,
Report No. NTSB/PAR-12/01
.
5.
BSI
,
2013
,
BS 7910: Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures
,
British Standards Institution
,
London, UK
.
6.
Xiong
,
Y.
, and
Hu
,
X. X.
,
2011
, “
The Effect of Microstructure on Fatigue Crack Growth in Q345 Steel Welded Joint
,”
Fatigue Fract. Eng. Mater. Struct.
,
35
(
6
), pp.
500
512
.
7.
Shi
,
Y. W.
,
Chen
,
B. Y.
, and
Zhang
,
J. X.
,
1990
, “
Effect of Welding Residual Stresses on Fatigue Crack Growth Behavior in Butt Welds of a Pipeline Steel
,”
Eng. Fract. Mech.
,
36
(
6
), pp.
893
902
.
8.
Neves Beltrao
,
M. A.
,
Castodeza
,
E. M.
, and
Bastian
,
F. L.
,
2011
, “
Fatigue Crack Propagation in API 5L X-70 Pipeline Steel Longitudinal Welded Joint Under Constant and Variable Amplitudes
,”
Fatigue Fract. Eng. Mater. Struct.
,
34
(
5
), pp.
321
328
.
9.
Iida
,
S.
, and
Kobayashi
,
A.
,
1969
, “
Crack Propagation Rate in 7075-T6 Plates Under Cyclic Tensile and Transverse Shear Loading
,”
ASME J. Basic Eng.
,
91
(
4
), pp.
764
769
.
10.
Qian
,
J.
, and
Fatemi
,
A.
,
1996
, “
Mixed Mode Fatigue Crack Growth: A Literature Survey
,”
Eng. Fract. Mech.
,
56
(
6
), pp.
969
990
.
11.
Richard
,
H. A.
,
Fulland
,
M.
, and
Sander
,
M.
,
2005
, “
Theoretical Crack Path Prediction
,”
Fatigue Fract. Eng. Mater. Struct.
,
28
(
3
), pp.
3
12
.
12.
Roberts
,
R.
, and
Kibler
,
J.
,
1971
, “
Mode II Fatigue Crack Propagation
,”
J. Basic Eng.
,
93
(
4
), pp.
671
680
.
13.
Zerres
,
P.
, and
Vormwald
,
M.
,
2014
, “
Review of Fatigue Crack Growth Under Non-Proportional Mixed-Mode Loading
,”
Int. J. Fatigue
,
58
, pp.
75
83
.
14.
Highsmith
,
J.
,
2009
, “
Crack Path Determination for Non-Proportional Mixed-Mode Fatigue
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
15.
Yoo
,
Y. S.
, and
Ando
,
K.
,
1999
, “
Circumferential Fatigue Crack Growth and Crack Opening Behavior in Pipe Subjected to Bending Moment
,”
15th International Conference on Structural Mechanics in Reactor Technology (SMiRT-15)
, Seoul, pp.
V343
V350
.
16.
Carpinteri
,
A.
, and
Brighenti
,
R.
,
2000
, “
A Three-Parameter Model for Fatigue Behaviour of Circumferential Surface Flaws in Pipes
,”
Int. J. Mech. Sci.
,
42
(
7
), pp.
1255
1269
.
17.
Singh
,
P. K.
,
Bhasin
,
V.
,
Kushwaha
,
H. S.
,
Gandhi
,
P.
, and
Murthy
,
D. S. R.
,
2003
, “
Crack Initiation and Growth Behavior of Circumferentially Cracked Pipes Under Cyclic and Monotonic Loading
,”
Int. J. Pressure Vessels Piping
,
80
(
9
), pp.
629
640
.
18.
Singh
,
P. K.
,
Vaze
,
K. K.
,
Ghosh
,
A. K.
,
Kushwaha
,
H. S.
, and
Murthy
,
D. S. R.
,
2008
, “
Fatigue Studies on Carbon Steel Piping Materials and Components: Indian PHWRs
,”
Nucl. Eng. Des.
,
238
(
4
), pp.
801
813
.
19.
Saxena
,
S.
, and
Chouhan
,
J. S.
,
2009
, “
Fatigue Life Prediction Analysis of Surface Cracked Straight Pipes
,”
Trans. Indian Inst. Metals
,
62
(
3
), pp.
191
195
.
20.
Shahani
,
A. R.
,
Shodja
,
M. M.
, and
Shahhosseini
,
A.
,
2010
, “
Experimental Investigation and Finite Element Analysis of Fatigue Crack Growth in Pipes Containing a Circumferential Semi-Elliptical Crack Subjected to Bending
,”
Exp. Mech.
,
50
(
5
), pp.
563
573
.
21.
Pinheiro
,
B.
,
Pasqualino
,
I.
, and
Cunha
,
S.
,
2014
, “
Fatigue Life Assessment of Damaged Pipelines Under Cyclic Internal Pressure: Pipelines With Longitudinal and Transverse Plain Dents
,”
Int. J. Fatigue
,
68
, pp.
38
47
.
22.
Van Wittenberghe
,
J.
,
De Baets
,
P.
,
De Waele
,
P.
,
Bui
,
T. T.
, and
De Roeck
,
G.
,
2011
, “
Evaluation of Fatigue Crack Propagation in a Threaded Pipe Connection Using Optical Dynamic 3D Displacement Analysis Technique
,”
Eng. Failure Anal.
,
18
(
3
), pp.
1115
1121
.
23.
Luo
,
J.
,
Xiong
,
Q.
, and
Huo
,
C.
,
2004
, “
Defective Pipeline Fatigue-Life Prediction Using Failure Assessment Diagram Technique
,”
ASME
Paper No. IPC2004-0487, pp.
1277
1280
.
24.
Seifi
,
R.
, and
Omidvar
,
N.
,
2013
, “
Fatigue Crack Growth Under Mixed Mode I + II Loading
,”
Mar. Struct.
,
34
, pp.
1
15
.
25.
Fremy
,
F.
,
Pommier
,
S.
,
Poncelet
,
M.
,
Raka
,
B.
,
Galenne
,
E.
,
Courtin
,
S.
, and
Le Roux
,
J.
,
2014
, “
Load Path Effect on Fatigue Crack Propagation in I + II + III Mixed Mode Conditions—Part 1: Experimental Investigations
,”
Int. J. Fatigue
,
62
, pp.
104
112
.
26.
Varfolomeev
,
I.
,
Burdack
,
M.
,
Moroz
,
S.
,
Siegele
,
D.
, and
Kadau
,
K.
,
2014
, “
Fatigue Crack Growth Rates and Paths in Two Planar Specimens Under Mixed Mode Loading
,”
Int. J. Fatigue
,
58
, pp.
12
19
.
27.
API
,
2012
,
Spec. 5L: Specification for Line Pipe
,
American Petroleum Institute
,
Washington, DC
.
28.
ASTM
,
2015
,
E8/E8M: Standard Test Methods for Tension Testing of Metallic Materials
,
ASTM International
,
West Conshohocken, PA
.
29.
ASTM
,
2013
,
E2248: Standard Test Method for Impact Testing of Miniaturized Charpy V-Notch Specimens
,
ASTM International
,
West Conshohocken, PA
.
30.
Polak
,
J.
, and
Knesl
,
Z.
,
1975
, “
On the Fatigue Crack Growth Rate Evaluation From Experimental Data
,”
Int. J. Fract.
,
11
(
4
), pp.
693
696
.
31.
Mohanty
,
J. R.
,
Verma
,
B. B.
, and
Ray
,
P. K.
,
2010
, “
Determination of Fatigue Crack Growth Rate From Experimental Data: A New Approach
,”
Int. J. Microstruct. Mater. Prop.
,
5
(
1
), pp.
79
87
.
32.
Dieter
,
G. E.
,
1988
,
Mechanical Metallurgy
,
McGraw-Hill
,
New York
.
33.
Broek
,
D.
,
1988
,
The Practical Use of Fracture Mechanics
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
You do not currently have access to this content.