For large-scale offshore wind turbine rotating blades (NREL 5MW), the theoretical model of vibration due to fluid-structure interaction (FSI) is established, and the basic equations for modal analysis are given. Based on ANSYS workbench platform, the blade modal characteristics at different rotating speeds are analyzed, and further research on dynamic stability is carried out. The results indicate that the FSI and the blade rotation have a great influence on modal frequencies, which increase with the rotating speed of the blade under FSI. When the frequency of the periodic wind speed is close to the first-order natural frequency of the blade, both the maximum flapping displacement and the maximum von Mises stress increase with time, and the vibration divergence appears. At the safe tower clearance of 4.50 m, the critical value of the blade maximum von Mises stress shows a linear upward trend with the increase of the elasticity modulus, which provides technical references for optimization design and safe operation of wind turbine blades.

References

1.
Larsen
,
J. W.
, and
Nielsen
,
S. R. K.
,
2006
, “
Non-Linear Dynamics of Wind Turbine Wings
,”
Int. J. Non-Linear Mech.
,
41
(
5
), pp.
629
643
.
2.
Larsen
,
J. W.
, and
Nielsen
,
S. R. K.
,
2007
, “
Nonlinear Parametric Instability of Wind Turbine Wings
,”
J. Sound Vib.
,
299
(
1–2
), pp.
64
82
.
3.
Larsen
,
J. W.
,
Iwankiewicz
,
R.
, and
Nielsen
,
S. R. K.
,
2007
, “
Nonlinear Stochastic Stability Analysis of Wind Turbine Wings by Monte Carlo Simulations
,”
Probab. Eng. Mech.
,
22
(
2
), pp.
181
193
.
4.
Qin
,
Y.
,
Liu
,
Q. K.
,
Li
,
L.
, and
L
,
Y. H.
,
2013
, “
Analysis of the Dynamic Response and Stability for Non-Linear Lead-Lag Vibrations of Wind Turbine Blades
,”
Chin. Q. Mech.
,
34
(
1
), pp.
41
48
(in Chinese).
5.
Chaviaropoulos
,
P. K.
,
1999
, “
Flap/Lead–Lag Aeroelastic Stability of Wind Turbine Blade Sections
,”
Wind Energy
,
2
(
2
), pp.
99
112
.
6.
Chaviaropoulos
,
P. K.
,
Soerensen
,
N. N.
, and
Hansen
,
M. O. L.
,
2003
, “
Viscous and Aeroelastic Effects on Wind Turbine Blades. The Viscel Project—Part II: Aeroelastic Stability Investigations
,”
Wind Energy
,
6
(
4
), pp.
387
403
.
7.
Wang
,
Q.
,
Chen
,
J.
,
Li
,
S. L.
, and
Guo
,
X. F.
,
2013
, “
Study on Dynamic Aeroelastic Stability for a MW-Size Wind Turbine Blade Section
,”
J. Mach. Des.
,
30
(
10
), pp.
5
10
(in Chinese).
8.
Leung
,
A. Y. T.
,
2010
, “
Dynamics and Buckling of Thin Pre-Twisted Beams Under Axial Load and Torque
,”
Int. J. Struct. Stab. Dyn.
,
10
(
5
), pp.
957
981
.
9.
Calabretta
,
A.
,
Colella
,
M. M.
,
Greco
,
L.
, and
Gennaretti
,
M.
,
2016
, “
Assessment of a Comprehensive Aeroelastic Tool for Horizontal-Axis Wind Turbine Rotor Analysis
,”
Wind Energy
,
19
(
12
), pp.
2301
2319
.
10.
Bae
,
Y. H.
, and
Kim
,
M. H.
,
2014
, “
Aero-Elastic-Control-Floater-Mooring Coupled Dynamic Analysis of Floating Offshore Wind Turbine in Maximum Operation and Survival Conditions
,”
ASME J. Offshore Mech. Arct. Eng.
,
136
(
2
), p. 020902.
11.
Raghav
,
V.
, and
Komerath
,
N.
,
2015
, “
Advance Ratio Effects on the Flow Structure and Unsteadiness of the Dynamic-Stall Vortex of a Rotating Blade in Steady Forward Flight
,”
Phys. Fluids
,
27
(
2
), p.
027101
.
12.
Kwon
,
S.
,
Chung
,
J.
, and
Yoo
,
H. H.
,
2013
, “
Structural Dynamic Modeling and Stability of a Rotating Blade Under Gravitational Force
,”
J. Sound Vib.
,
332
(
11
), pp.
2688
2700
.
13.
Babu
,
A. A.
, and
Vasudevan
,
R.
,
2016
, “
Dynamic Instability Analysis of Rotating Delaminated Tapered Composite Plates Subjected to Periodic In-Plane Loading
,”
Arch. Appl. Mech.
,
86
(
12
), pp.
1965
1986
.
14.
Zhang
,
J. P.
,
Pan
,
L. L.
,
Hu
,
D. M.
, and
Zhuang
,
J. X.
,
2011
, “
Influence of Offshore Average Wind Speeds on Dynamic Responses of the Wind Turbine Blade
,”
East China Electric Power
,
39
(
4
), pp.
636
639
(in Chinese).
15.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
Definition of a 5-Mw Reference Wind Turbine for Offshore System Development
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/TP-500-38060
.
16.
Zhang
,
J. P.
,
Guo
,
L.
,
Wu
,
H. L.
,
Zhou
,
A. X.
,
Hu
,
D. M.
, and
Ren
,
J. X.
,
2014
, “
The Influence of Wind Shear on Vibration of Geometrically Nonlinear Wind Turbine Blade Under Fluid-Structure Interaction
,”
Ocean Eng.
,
84
, pp.
14
19
.
17.
SPC
,
2010
, “
Wind Turbine Generator System-Rotor Blades
,”
National Standards of the People's Republic of China
, Beijing, China, Standard No.
GB/T 25383-2010
.
You do not currently have access to this content.