Abstract

Steep, focusing waves can experience fast and local nonlinear evolution of the spectrum due to wave–wave interactions resulting in energy transfer to both higher and lower wavenumber components. The shape and kinematics of a steep wave may, thus, differ substantially from the predictions of linear theory. We have investigated the role of nonlinear interactions on group shape for a steep, narrow-banded, directionally spread wave group focusing in deep water using the fully nonlinear potential flow solver, oceanwave3d. Exact second-order correction of the initial conditions has been implemented together with a novel third-order approximate correction based on a Stokes-type formulation for surface elevation combined with a scaling argument for the third-order velocity potential. Four-phase separation reveals that the third-order scheme provides a good estimate for the third-order superharmonics. A quantitative assessment of numerical error has also been performed for the spatial and temporal discretization, including energy conservation, a reversibility check, and validation against previous simulations performed with a higher-order spectral (HOS) code. The initially narrow-banded amplitude spectrum exhibits the formation of “sidelobes” at angles of approximately ±35deg to the spectral peak during the simulated extreme wave event, occurring in approximately ten wave periods, with a preferential energy transfer to high-wavenumber components. The directional energy transfer is attributed to resonant third-order interactions with a discussion of the engineering implications.

References

1.
Kharif
,
C.
, and
Pelinovsky
,
E.
,
2003
, “
Physical Mechanisms of the Rogue Wave Phenomenon
,”
Eur. J. Mech. B/Fluids
,
22
(
6
), pp.
603
634
. 10.1016/j.euromechflu.2003.09.002
2.
Dysthe
,
K.
,
Krogstad
,
H. E.
, and
Müller
,
P.
,
2008
, “
Oceanic Rogue Waves
,”
Annu. Rev. Fluid Mech.
,
40
(
1
), pp.
287
310
. 10.1146/annurev.fluid.40.111406.102203
3.
Adcock
,
T. A. A.
, and
Taylor
,
P. H.
,
2014
, “
The Physics of Anomalous (‘Rogue’) Ocean Waves
,”
Rep. Prog. Phys.
,
77
(
10
), p.
105901
. 10.1088/0034-4885/77/10/105901
4.
Adcock
,
T. A. A.
,
Taylor
,
P. H.
, and
Draper
,
S.
,
2015
, “
Nonlinear Dynamics of Wave-Groups in Random Seas: Unexpected Walls of Water in the Open Ocean
,”
Proc. R. Soc. A
,
471
(
2184
), p.
20150660
. 10.1098/rspa.2015.0660
5.
Fujimoto
,
W.
,
Waseda
,
T.
, and
Webb
,
A.
,
2018
, “
Impact of the Four-Wave Quasi-Resonance on Freak Wave Shapes in the Ocean
,”
Ocean Dyn.
,
69
(
1
), pp.
101
121
. 10.1007/s10236-018-1234-9
6.
Latheef
,
M.
,
Swan
,
C.
, and
Spinneken
,
J.
,
2017
, “
A Laboratory Study of Nonlinear Changes in the Directionality of Extreme Seas
,”
Proc. R. Soc. A
,
473
(
2199
), p.
20160290
. 10.1098/rspa.2016.0290
7.
Bateman
,
W. J. D.
,
Katsardi
,
V.
, and
Swan
,
C.
,
2012
, “
Extreme Ocean Waves. Part I. The Practical Application of Fully Nonlinear Wave Modelling
,”
Appl. Ocean Res.
,
34
, pp.
209
224
. 10.1016/j.apor.2011.05.002
8.
Gibbs
,
R. H.
, and
Taylor
,
P. H.
,
2005
, “
Formation of Walls of Water in ‘Fully’ Nonlinear Simulations
,”
Appl. Ocean Res.
,
27
(
3
), pp.
142
157
. 10.1016/j.apor.2005.11.009
9.
Tromans
,
P. S.
,
Anaturk
,
A.
, and
Hagemeijer
,
P.
,
1991
,
A New Model for the Kinematics of Large Ocean Waves–Application as a Design Wave
,”
Proceedings of the First International Offshore and Polar Engineering Conference (ISOPE)
,
Edinburgh, UK
,
Aug. 11–16
. ISOPE-I-91-154.
10.
Bateman
,
W. J. D.
,
Swan
,
C.
, and
Taylor
,
P. H.
,
2001
, “
On the Efficient Numerical Simulation of Directionally Spread Surface Water Waves
,”
J. Comp. Phys.
,
174
(
1
), pp.
277
305
. 10.1006/jcph.2001.6906
11.
Adcock
,
T. A. A.
, and
Taylor
,
P. H.
,
2016
, “
Fast and Local Non-Linear Evolution of Steep Wave-Groups on Deep Water: A Comparison of Approximate Models to Fully Nonlinear Simulations
,”
Phys. Fluids
,
28
(
1
), p.
016601
. 10.1063/1.4938144
12.
Longuet-Higgins
,
M. S.
,
1976
, “
On the Nonlinear Transfer of Energy in the Peak of a Gravity-Wave Spectrum: A Simplified Model
,”
Proc. R. Soc. Lond. A.
,
347
(
1650
), pp.
311
328
. 10.1098/rspa.1976.0003
13.
Engsig-Karup
,
A. P.
,
Bingham
,
H. B.
, and
Lindberg
,
O.
,
2009
, “
An Efficient Flexible-order Model for 3D Nonlinear Water Waves
,”
J. Comp. Phys.
,
228
(
6
), pp.
2100
2118
. 10.1016/j.jcp.2008.11.028
14.
Currie
,
I. G
,
1993
,
Fundamental Mechanics of Fluids
, 2nd ed.,
McGraw-Hill
,
New York
, pp.
201
204
.
15.
Bingham
,
H. B.
, and
Zhang
,
H.
,
2007
, “
On the Accuracy of Finite-Difference Solutions for Nonlinear Water Waves
,”
J. Eng. Math.
,
58
(
1–4
), pp.
211
228
. 10.1007/s10665-006-9108-4
16.
Dalzell
,
J. F.
,
1999
, “
A Note on Finite Depth Second-Order Wave-Wave Interactions
,”
Appl. Ocean Res.
,
21
(
3
), pp.
105
111
. 10.1016/S0141-1187(99)00008-5
17.
Walker
,
D. A. G.
,
Taylor
,
P. H.
, and
Eatock Taylor
,
R.
,
2004
, “
The Shape of Large Surface Waves on the Open Sea and the Draupner New Year Wave
,”
Appl. Ocean Res.
,
26
(
3–4
), pp.
73
83
. 10.1016/j.apor.2005.02.001
18.
Fitzgerald
,
C. J.
,
Taylor
,
P. H.
,
Eatock Taylor
,
R.
,
Grice
,
J.
, and
Zhang
,
J.
,
2014
, “
Phase Manipulation and the Harmonic Components of Ringing Forces on a Surface-Piercing Column
,”
Proc. R. Soc. A
,
470
(
2168
), p.
20130847
. 10.1098/rspa.2013.0847
19.
Madsen
,
P. A.
, and
Fuhrman
,
D. R.
,
2012
, “
Third-Order Theory for Multi-Directional Irregular Waves
,”
J. Fluid Mech.
,
698
, pp.
304
334
. 10.1017/jfm.2012.87
20.
Lannes
,
D.
,
2013
,
The Water Waves Problem: Mathematical Analysis and Asymptotics (Mathematical Surveys and Monographs)
, Vol.
188
,
American Mathematical Society
,
Providence, RI
, p.
16
.
21.
Ducrozet
,
G.
,
Bingham
,
H. B.
,
Engsig-Karup
,
A. P.
,
Bonnefoy
,
F.
, and
Ferrant
,
P.
,
2012
, “
A Comparative Study of Two Fast Nonlinear Free-Surface Water Wave Models
,”
Int. J. Numer. Meth. Fluids
,
69
(
11
), pp.
1818
1834
. 10.1002/fld.2672
22.
den Bremer
,
van
,
Taylor
,
T. S.
, and
H.
,
P.
,
2015
, “
Estimates of Lagrangian Transport by Surface Gravity Wave Groups: The Effects of Finite Depth and Directionality
,”
J. Geophys. Res. Oceans
,
120
(
4
), pp.
2701
2722
. 10.1002/2015JC010712
23.
Phillips
,
O. M.
,
1960
, “
On the Dynamics of Unsteady Gravity Waves of Finite Amplitude. Part 1. The Elementary Interactions
,”
J. Fluid Mech.
,
9
(
2
), pp.
193
217
. 10.1017/S0022112060001043
You do not currently have access to this content.