Abstract

Accurate estimation of extreme wave condition is desired for the rational design of offshore structures, but the estimation results are known to have uncertainty from various sources. The quality and quantity of the available extreme wave data differ among ocean regions since the atmospheric causes of extreme waves are not identical. This paper provides insight into how the different extreme wave behaviors influence the uncertainty of extreme wave estimation at each location. A review of extreme waves in four regions, namely the Gulf of Mexico, North West Pacific, Adriatic Sea, and the North Sea, revealed the difference in data uncertainty, shape parameter, and frequency of occurrence. The likelihood-weighted method was introduced to quantitatively assess the impact of each parameter on the uncertainty of extreme wave analysis. Case study based on representative parameters of the Gulf of Mexico and the North Sea revealed the large epistemic uncertainty for a region dominated by tropical cyclones. The assessment conducted in this paper is unique as it evaluates the epistemic uncertainty inherited in the extreme sample data. When the epistemic uncertainty is large, such as the case illustrated for the Gulf of Mexico, the variance from different approaches may not be significant against the epistemic uncertainty inherited in the sample data.

References

1.
Muir
,
L. R.
, and
El-Shaarawi
,
A.
,
1986
, “
On the Calculation of Extreme Wave Heights: a Review
,”
Ocean Eng.
,
13
(
1
), pp.
93
118
. 10.1016/0029-8018(86)90006-5
2.
Jonathan
,
P.
, and
Ewans
,
K.
,
2007
, “
Uncertainties in Extreme Wave Height Estimates for Hurricane-dominated Regions
,”
ASME J. Offshore Mech. Arctic Eng.
,
129
(
4
), pp.
300
305
. 10.1115/1.2746401
3.
Bitner-Gregersen
,
E. M.
,
Ewans
,
K. C.
, and
Johnson
,
M. C.
,
2014
, “
Some Uncertainties Associated with Wind and Wave Description and Their Importance for Engineering Applications
,”
Ocean Eng.
,
86
, pp.
11
25
. 10.1016/j.oceaneng.2014.05.002
4.
Bitner-Gregersen
,
E. M.
, and
Hagen
,
Ø.
,
1990
, “
Uncertainties in Data for the Offshore Environment
,”
Struct. Saf.
,
7
(
1
), pp.
11
34
. 10.1016/0167-4730(90)90010-M
5.
Wada
,
R.
, and
Waseda
,
T.
,
2014
, “
Consideration of Epistemic Uncertainty in Extreme Wave Height Estimation
,”
ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering
, American Society of Mechanical Engineers,
New York
,
June 8–13
, p.
V01AT01A022
.
6.
Wada
,
R.
,
Waseda
,
T.
, and
Jonathan
,
P.
,
2016
, “
Extreme Value Estimation Using the Likelihood-weighted Method
,”
Ocean Eng.
,
124
, pp.
241
251
. 10.1016/j.oceaneng.2016.07.063
7.
Giesbrecht
,
F.
, and
Kempthorne
,
O.
,
1976
, “
Maximum Likelihood Estimation in the Three-parameter Lognormal Distribution
,”
J. Roy. Stat. Soc. Ser. B
,
38
, pp.
257
264
. 10.1111/j.2517-6161.1976.tb01591.x
8.
Powell
,
M. D.
,
Murillo
,
S.
,
Dodge
,
P.
,
Uhlhorn
,
E.
,
Gamache
,
J.
,
Cardone
,
V.
,
Cox
,
A.
,
Otero
,
S.
,
Carrasco
,
N.
,
Annane
,
B.
, and
Fleur
,
R. S.
,
2010
, “
Reconstruction of Hurricane Katrina’s Wind Fields for Storm Surge and Wave Hindcasting
,”
Ocean Eng.
,
37
(
1
), pp.
26
36
. 10.1016/j.oceaneng.2009.08.014
9.
Northrop
,
P. J.
, and
Jonathan
,
P.
,
2011
, “
Threshold Modelling of Spatially Dependent Non-stationary Extremes with Application to Hurricane-induced Wave Heights
,”
Environmetrics
,
22
(
7
), pp.
799
809
. 10.1002/env.1106
10.
Goda
,
Y.
,
1988
, “
On the Methodology of Selecting Design Wave Height
,”
Coastal Eng. Proc.
,
1
(
21
), p.
67
. 10.9753/icce.v21.67
11.
Katalinić
,
M.
,
Ćorak
,
M.
, and
Parunov
,
J.
,
2015
, “Analysis of Wave Heights and Wind Speeds in the Adriatic Sea,”
Maritime Technology and Engineering
, 1st ed.,
C.
Guedes Soares
and
T. A.
Santos
, eds.,
CRC Press
,
London
, pp.
1389
1394
.
12.
Holthuijsen
,
L. H.
,
De Ronde
,
J. G.
,
Eldeberky
,
Y.
,
Tolman
,
H. L.
,
Booij
,
N.
,
Bouws
,
E.
, and
Ferier
,
P. G. P.
,
1994
, “
The Maximum Significant Wave Height in the Southern North Sea
,”
Proceecings of 24th International Conference on Coastal Engineering
,
ASCE
,
Cobe
, pp.
261
271
.
13.
Caires
,
S.
,
Groeneweg
,
J.
, and
Sterl
,
A.
,
2006
, “
Changes in The North Sea Extreme Waves
,”
Preprints of 9th International Workshop on Wave Hindcasting and Forecasting
,
Victoria, Canada
,
Sept. 24–29
.
14.
Méndez
,
F. J.
,
Menéndez
,
M.
,
Luceño
,
A.
, and
Losada
,
I. J.
,
2006
, “
Estimation of the Long-term Variability of Extreme Significant Wave Height Using a Time-dependent Peak Over Threshold (pot) Model
,”
J. Geophys. Res. Oceans
,
111
(
C7
), p. C07024. 10.1029/2005jc003344
15.
Pinto
,
J. G.
,
Bellenbaum
,
N.
,
Karremann
,
M. K.
, and
Della-Marta
,
P. M.
,
2013
, “
Serial Clustering of Extratropical Cyclones Over the North Atlantic and Europe Under Recent and Future Climate Conditions
,”
J. Geophys. Res-Atmos.
,
118
(
22
), pp.
12476
12485
. 10.1002/2013jd020564
16.
Cardone
,
V.
, and
Cox
,
A.
,
2009
, “
Tropical Cyclone Wind Field Forcing for Surge Models: Critical Issues and Sensitivities
,”
Natural Hazards
,
51
(
1
), pp.
29
47
. 10.1007/s11069-009-9369-0
17.
Stopa
,
J. E.
, and
Cheung
,
K. F.
,
2014
, “
Intercomparison of Wind and Wave Data From the Ecmwf Reanalysis Interim and the Ncep Climate Forecast System Reanalysis
,”
Ocean Model.
,
75
, pp.
65
83
. 10.1016/j.ocemod.2013.12.006
18.
Powell
,
M. D.
,
Vickery
,
P. J.
, and
Reinhold
,
T. A.
,
2003
, “
Reduced Drag Coefficient for High Wind Speeds in Tropical Cyclones
,”
Nature
,
422
(
6929
), pp.
279
283
. 10.1038/nature01481
19.
Donelan
,
M.
,
Haus
,
B.
,
Reul
,
N.
,
Plant
,
W.
,
Stiassnie
,
M.
,
Graber
,
H.
,
Brown
,
O.
, and
Saltzman
,
E.
,
2004
, “
On the Limiting Aerodynamic Roughness of the Ocean in Very Strong Winds
,”
Geophys. Res. Lett.
,
31
(
18
), p. L18306. 10.1029/2004GL019460
20.
Moon
,
I.-J.
,
Ginis
,
I.
, and
Hara
,
T.
,
2008
, “
Impact of the Reduced Drag Coefficient on Ocean Wave Modeling Under Hurricane Conditions
,”
Monthly Weather Rev.
,
136
(
3
), pp.
1217
1223
. 10.1175/2007MWR2131.1
21.
Dee
,
D. P.
,
Uppala
,
S. M.
,
Simmons
,
A. J.
,
Berrisford
,
P.
,
Poli
,
P.
,
Kobayashi
,
S.
,
Andrae
,
U.
,
Balmaseda
,
M. A.
,
Balsamo
,
G.
,
Bauer
,
P.
,
Bechtold
,
P.
,
Beljaars
,
A. C. M.
,
van de Berg
,
L.
,
Bidlot
,
J.
,
Bormann
,
N.
,
Delsol
,
C.
,
Dragani
,
R.
,
Fuentes
,
M.
,
Geer
,
A. J.
,
Haimberger
,
L.
,
Healy
,
S. B.
,
Hersbach
,
H.
,
Hlm
,
E. V.
,
Isaksen
,
L.
,
Kllberg
,
P.
,
Khler
,
M.
,
Matricardi
,
M.
,
McNally
,
A. P.
,
Monge-Sanz
,
B. M.
,
Morcrette
,
J. -J.
,
Park
,
B. -K.
,
Peubey
,
C.
,
de Rosnay
,
P.
,
Tavolato
,
C.
,
Thpaut
,
J. -N.
, and
Vitart
,
F.
,
2011
, “
The Era-interim Reanalysis: Configuration and Performance of the Data Assimilation System
,”
Q. J. R. Metereol. Soc.
,
137
(
656
), pp.
553
597
. 10.1002/qj.828
22.
Webb
,
A.
,
Waseda
,
T.
,
Fujimoto
,
W.
,
Horiuchi
,
K.
,
Kiyomatsu
,
K.
,
Matsuda
,
K.
,
Miyazawa
,
Y.
,
Varlamov
,
S.
, and
Yoshikawa
,
J.
,
2016
, “
A High-Resolution, Wave and Current Resource Assessment of Japan: The Web Gis Dataset
,” .
23.
Wada
,
R.
, and
Waseda
,
T.
,
2014
, “
On the Extreme Value Estimation of Significant Wave Height Around Japan
,”
Proc. of JASNAOE (in Japanese)
,
18
, pp.
563
566
.
You do not currently have access to this content.