Abstract

This paper investigates the question of the existence of nonlinear wave–ice interaction with the focus on nonlinear wave propagation and dispersion of waves. The scope of this investigation is to provide a better understanding of ice and wave conditions required to observe nonlinear wave effects under level ice. Direct numerical simulations of nonlinear waves in solid ice are performed within the weakly nonlinear Schrödinger equation (NLSE) framework, using the theoretical findings from Liu and Mollo-Christensen’s 1988 paper. Systematic variations of wave and ice parameters address the impact of the mechanical ice properties and ice thickness on traveling waves of certain wave lengths. The impacts of parameter characteristics on nonlinear focusing and wave dynamics, as well as possible constraints regarding physical consistency, are discussed. It is presented that nonlinear focusing in level ice occurs theoretically. Hereby, distinctive areas of validity with respect to nonlinear wave focusing are identified within the parameter study, which strongly depends on the material properties of the level ice. The results obtained in the parameter study are subsequently used to investigate wave focusing under level ice. Therefore, an exact solution of the NLSE, the Peregrine breather, is utilized. The analytical solution for level ice is compared to the open water solution and accompanied by direct numerical simulations. These investigations show that nonlinear wave focusing can be predicted under level ice for certain parameters. In addition, the agreement of the direct simulations and the analytic solution verifies the numerical approach for nonlinear waves in solid ice.

References

1.
Harvey
,
B. J.
,
Shaffrey
,
L. C.
, and
Woollings
,
T. J.
,
2015
, “
Deconstructing the Climate Change Response of the Northern Hemisphere Wintertime Storm Tracks
,”
Clim. Dyn.
,
45
(
9–10
), pp.
2847
2860
. 10.1007/s00382-015-2510-8
2.
Wuebbles
,
D.
,
Fahey
,
D.
,
Hibbard
,
K.
,
Dokken
,
D.
,
Stewart
,
B.
, and
Maycock
,
T.
,
2017
, “
Climate Science Special Report: Fourth National Climate Assessment
,” Volume
I
.
Technical Report
,
U.S. Global Change Research Program
.
3.
Masson-Delmotte
,
V.
,
Zhai
,
P.
,
Pörtner
,
H.
,
Roberts
,
D.
,
Skea
,
J.
,
Shukla
,
P.
,
Pirani
,
A.
,
Moufouma-Okia
,
W.
,
Péan
,
C.
,
Pidcock
,
R.
,
Connors
,
S.
,
Matthews
,
J. B. R.
,
Chen
,
Y.
,
Zhou
,
X.
,
Gomis
,
M. I.
,
Lonnoy
,
E.
,
Maycock
,
T.
,
Tignor
,
M.
, and
Waterfield
,
T. E.
,
2018
, “
IPCC, 2018: Summary for Policymakers
,”
IPCC Special Report
.
4.
Li
,
J.
,
Ma
,
Y.
,
Liu
,
Q.
,
Zhang
,
W.
, and
Guan
,
C.
,
2019
, “
Growth of Wave Height With Retreating Ice Cover in the Arctic
,”
Cold Reg. Sci. Technol.
,
164
, p.
102790
. 10.1016/j.coldregions.2019.102790
5.
Morim
,
J.
,
Hemer
,
M.
,
Wang
,
X. L.
,
Cartwright
,
N.
,
Trenham
,
C.
,
Semedo
,
A.
,
Young
,
I.
,
Bricheno
,
L.
,
Camus
,
P.
,
Casas-Prat
,
M.
,
Erikson
,
L.
,
Mentaschi
,
L.
,
Mori
,
N.
,
Shimura
,
T.
,
Timmermans
,
B.
,
Aarnes
,
O.
,
Breivik
,
O.
,
Behrens
,
A.
,
Dobrynin
,
M.
,
Menendez
,
M.
,
Staneva
,
J.
,
Wehner
,
M.
,
Wolf
,
J.
,
Kamranzad
,
B.
,
Webb
,
A.
,
Stopa
,
J.
, and
Andutta
,
F.
,
2019
, “
Robustness and Uncertainties in Global Multivariate Wind-Wave Climate Projections
,”
Nat. Clim. Change
,
9
(
9
), pp.
711
718
. 10.1038/s41558-019-0542-5
6.
Stephenson
,
S. R.
,
Smith
,
L. C.
, and
Agnew
,
J. A.
,
2011
, “
Divergent Long-Term Trajectories of Human Access to the Arctic
,”
Nat. Clim. Change
,
1
(
3
), pp.
156
160
. 10.1038/nclimate1120
7.
Liu
,
M.
, and
Kronbak
,
J.
,
2010
, “
The Potential Economic Viability of Using the Northern Sea Route (NSR) as an Alternative Route Between Asia and Europe
,”
J. Transp. Geogr.
,
18
(
3
), pp.
434
444
. 10.1016/j.jtrangeo.2009.08.004
8.
Von Bock und Polach
,
R. U. F.
,
Ehlers
,
S.
, and
Erikstad
,
S.
,
2015
, “
A Decision-Based Design Approach for Ships Operating in Open Water and Ice
,”
J. Ship Prod. Des.
,
31
(
4
), pp.
209
219
. 10.5957/JSPD.31.4.140001
9.
Whitham
,
G.
,
1967
, “
Non-Linear Dispersion of Water Waves
,”
J. Fluid Mech.
,
27
(
2
), pp.
399
412
. 10.1017/S0022112067000424
10.
Osborne
,
A. R.
,
Onorato
,
M.
, and
Serio
,
M.
,
2000
, “
The Nonlinear Dynamics of Rogue Waves and Holes in Deep-Water Gravity Wave Trains
,”
Phys. Lett. A
,
275
(
5–6
), pp.
386
393
. 10.1016/S0375-9601(00)00575-2
11.
Liu
,
A.
, and
Mollo-Christensen
,
E.
,
1988
, “
Wave Propagation in a Solid Ice Pack
,”
J. Phys. Oceanogr.
,
18
(
11
), pp.
1702
1712
. 10.1175/1520-0485(1988)018<1702:WPIASI>2.0.CO;2
12.
Collins
,
C.
,
Rogers
,
E.
,
Marchenko
,
A.
, and
Babanin
,
A.
,
2015
, “
In Situ Measurement of an Energetic Wave Event in the Arctic Marginal Ice Zone
,”
Geophys. Res. Lett.
,
42
(
6
), pp.
1863
1870
. 10.1002/2015GL063063
13.
Kohout
,
A. L.
,
Williams
,
M. J. M.
,
Dean
,
S. M.
, and
Meylan
,
M. H.
,
2014
, “
Storm Induced Sea Ice Breakup and the Implications for Ice Extent
,”
Nature
,
509
(
7502
), pp.
604
617
. 10.1038/nature13262
14.
Lamb
,
H.
,
1932
,
Hydrodynamics
,
Cambridge University Press
,
Cambridge
.
15.
Bronstein
,
I. N.
,
Semendjajew
,
K. A.
,
Musiol
,
G.
, and
Mühlig
,
H.
,
2013
,
Taschenbuch Der Mathematik
, 9th ed., Vol.
1
,
Springer-Verlag
,
New York
.
16.
Whitham
,
G.
,
2011
,
Linear and Nonlinear Waves
, Vol.
42
,
John Wiley & Sons
,
New York
.
17.
Kundu
,
P. K.
,
Cohen
,
I. M.
, and
Dowling
,
D. W.
,
2016
,
Fluid Mechanics
, 6th ed.,
Academic Press
,
New York
.
18.
Bracewell
,
R.
,
2000
,
The Fourier Transform and Its Applications
(
Electrical Engineering Series
),
McGraw-Hill
,
New York
.
19.
Gerstner
,
F.
,
1802
,
Theorie der wellen: Abhandlungen der Koniglichen Bohmischen Gesellschaft der Wissenschaften
, pp.
412
445
.
20.
Stokes
,
G. G.
,
1847
, “
On the Theory of Oscillatory Waves
,”
Camb. Trans.
,
8
, p.
441
473
.
21.
Zakharov
,
V.
,
1968
, “
Stability of Periodic Waves of Finite Amplitude on the Surface of a Deep Fluid
,”
Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki
,
9
(
2
), pp.
190
194
.
22.
Davey
,
A.
, and
Stewartson
,
K.
,
1974
, “
On Three-Dimensional Packets of Surface Waves
,”
Proc. R. Soc. Lond.
,
338
(
1613
), pp.
101
110
. 10.1098/rspa.1974.0076
23.
Holmes
,
M. H.
,
2012
,
Introduction to Perturbation Methods
, Vol.
20
,
Springer Science & Business Media
,
New York.
24.
Onorato
,
M.
,
Residori
,
S.
,
Bortolozzo
,
U.
,
Montina
,
A.
, and
Arecchi
,
F.
,
2013
, “
Rogue Waves and Their Generating Mechanism in Different Physical Contexts
,”
Phys. Rep.
,
528
(
2
), pp.
47
89
. 10.1016/j.physrep.2013.03.001
25.
Serio
,
M.
,
Onorato
,
M.
,
Osborne
,
A. R.
, and
Janssen
,
P.
,
2005
, “
On the Computation of the Benjamin-Feir Index
,”
Il nuovo cimento della Società Italiana di Fisica
,
28
(
6
), pp.
893
903
. 10.1007/bf02959563
26.
Weideman
,
J.
, and
Herbst
,
B.
,
1986
, “
Split-Step Methods for the Solution of the Nonlinear Schrödinger Equation
,”
SIAM J. Numer. Anal.
,
23
(
3
), pp.
485
507
. 10.1137/0723033
27.
Tappert
,
F.
,
1974
, “
Numerical Solutions of the Korteweg-De Vries Equation and Its Generalizations by the Split-Step Fourier Method
,”
Nonlinear Wave Motion
,
15
, pp.
215
216
.
28.
Kharif
,
C.
,
Pelinovsky
,
E.
, and
Slunyaev
,
A.
,
2009
,
Rogue Waves in the Ocean
,
Springer Verlag
,
New York
.
29.
Benjamin
,
T. B.
, and
Feir
,
J. E.
,
1967
, “
The Disintegration of Wave Trains on Deep Water
,”
J. Fluid Mech.
,
27
(
3
), pp.
417
430
. 10.1017/S002211206700045X
30.
Benney
,
D. J.
,
1962
, “
Non-Linear Gravity Wave Interaction
,”
J. Fluid Mech.
,
14
(
4
), pp.
577
584
. 10.1017/S0022112062001469
31.
Timco
,
G. W.
, and
Weeks
,
W. F.
,
2010
, “
A Review of the Engineering Properties of Sea Ice
,”
Cold Reg. Sci. Technol.
,
60
(
2
), pp.
107
129
. 10.1016/j.coldregions.2009.10.003
32.
Frankenstein
,
G.
, and
Garner
,
R.
,
1967
, “
Equations for Determining the Brine Volume of Sea Ice From 0.5 °C to 22.9 °C
,”
J. Glaciol.
,
6
(
48
), pp.
943
944
. 10.1017/S0022143000020244
33.
Timco
,
G. W.
,
1994
, “
Flexural Strength Equation for Sea Ice
,”
Cold Reg. Sci. Technol.
,
22
(
3
), pp.
285
298
. 10.1016/0165-232X(94)90006-X
34.
Riska
,
K.
,
Wilhelmson
,
M.
,
Englund
,
K.
, and
Leiviskä
,
T.
,
1998
, “
Performance of Merchant Vessels in Ice in the Baltic
,”
Technical Report
,
December
,
Finnish Maritime Administration
.
35.
Kevrekidis
,
P. G.
,
Frantzeskakis
,
D. J.
, and
Carretero-González
,
R.
,
2015
,
The Defocusing Nonlinear Schrödinger Equation: From Dark Solitons to Vortices and Vortex Rings
,
SIAM
,
Salt Lake City, UT
.
36.
Marchenko
,
A.
,
2016
, “
Damping of Surface Waves Propagating Below Solid Ice
,”
The 26th International Ocean and Polar Engineering Conference
,
Rhodes, Greece
,
June 26–July 2
,
International Society of Offshore and Polar Engineers
, pp.
1
8
.
37.
Guyenne
,
P.
, and
Parau
,
E. I.
,
2017
, “
Numerical Simulation of Solitary-Wave Scattering and Damping in Fragmented Sea Ice
,”
The 27th International Ocean and Polar Engineering Conference
,
San Francisco, CA
,
June 25–30
,
International Society of Offshore and Polar Engineers
, pp.
1
8
.
38.
Peregrine
,
D.
,
1983
, “
Water Waves, Nonlinear Schrödinger Equations and Their Solutions
,”
ANZIAM J.
,
25
(
1
), pp.
16
43
.
39.
Klein
,
M.
,
2015
, “
Tailoring Critical Wave Sequences for Response Based Design
,”
Ph.D. thesis
,
Technische Universität Berlin
,
Berlin
.
40.
Chabchoub
,
A.
,
Hoffmann
,
N. P.
, and
Akhmediev
,
N.
,
2011
, “
Rogue Wave Observation in a Water Wave Tank
,”
Phys. Rev. Lett.
,
106
(
20
), p.
204502
. 10.1103/PhysRevLett.106.204502
You do not currently have access to this content.