Abstract

In this paper, a three-dimensional integrated numerical model for a small-scale case of wave-induced oscillatory soil response around a semi-buried pipeline (PORO-WSSI-PIPE 3D) is proposed. In this model, we combine the Reynolds-averaged Navier–Stokes (RANS) equations for the 3D wave motions and the Biot’s consolidation equations for a porous elastic seabed foundation through pressure continuity at common boundaries, with pipeline being an elastic and impermeable medium. The computational results are validated through comparison with previous analytical solutions and laboratory wave flume tests, obtaining good agreement. Following validation, the numerical model is applied to simulate wave-seabed-pipeline interaction with different obliquities between pipeline and incident wave, varying from 30 deg to 90 deg. Snapshots of wave-seabed-pipeline interaction, as well as dynamic pore pressure distributions at typical locations in the vicinity of a semi-buried pipeline, are obtained and analyzed. The three-dimensional consolidation process of seabed under gravitational forces including the body forces of a pipeline is also discussed.

References

1.
Biot
,
M. A.
,
1941
, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
,
12
(
2
), pp.
155
164
. 10.1063/1.1712886
2.
Yamamoto
,
T.
,
Koning
,
H. L.
,
Sellmeijer
,
H.
, and
Hijum
,
E. V.
,
1978
, “
On the Response of a Poro-Elastic Bed to Water Waves
,”
J. Fluid Mech.
,
87
(
1
), pp.
193
206
. 10.1017/S0022112078003006
3.
Madsen
,
O. S.
,
1978
, “
Wave-Induced Pore Pressures and Effective Stresses in a Porous Bed
,”
Géotechnique
,
28
(
4
), pp.
377
393
.
4.
Hsu
,
J. R. C.
, and
Jeng
,
D.-S.
,
1994
, “
Wave-Induced Soil Response in An Unsaturated Anisotropic Seabed of Finite Thickness
,”
Int. J. Numer. Anal. Methods Geomech.
,
18
(
11
), pp.
785
807
. 10.1002/nag.1610181104
5.
Cheng
,
A. H. D.
, and
Liu
,
P. L.-F.
,
1986
, “
Seepage Force on a Pipeline Buried in a Poroelastic Seabed Under Wave Loading
,”
Appl. Ocean Res.
,
8
(
1
), pp.
22
32
. 10.1016/S0141-1187(86)80027-X
6.
Madga
,
W.
,
1997
, “
Wave-Induced Uplift Force on a Submarine Pipeline Buried in a Compressible Seabed
,”
Ocean Eng.
,
24
(
6
), pp.
551
576
. 10.1016/S0029-8018(96)00031-5
7.
Jeng
,
D.-S.
,
2001
, “
Numerical Modelling for Wave-Seabed-Pipe Interaction in a Non-Homogeneous Porous Seabed
,”
Soil Dyn. Earthquake Eng.
,
21
(
8
), pp.
699
712
. 10.1016/S0267-7261(01)00043-4
8.
Gao
,
F.-P.
, and
Wu
,
Y.-X.
,
2006
, “
Non-Linear Wave Induced Transient Response of Soil Around a Trenched Pipeline
,”
Ocean Eng.
,
33
(
3–4
), pp.
311
330
. 10.1016/j.oceaneng.2005.05.008
9.
Gao
,
F. P.
,
Jeng
,
D.-S.
, and
Sekiguchi
,
H.
,
2003
, “
Numerical Study on the Interaction Between Non-Linear Wave, Buried Pipeline and Non-Homogeneous Porous Seabed
,”
Comput. Geotech.
,
30
(
6
), pp.
535
547
. 10.1016/S0266-352X(03)00053-3
10.
Chen
,
W. Y.
,
Chen
,
G. X.
,
Chen
,
W.
,
Liao
,
C.
, and
Gao
,
H.
,
2019
, “
Numerical Simulation of the Nonlinear Wave-Induced Dynamic Response of Anisotropic Poro-Elastoplastic Seabed
,”
Mar. Georesour. Geotechnol.
,
37
(
8
), pp.
924
935
.
11.
Wen
,
F.
,
Jeng
,
D.-S.
,
Wang
,
J. H.
, and
Zhou
,
X. L.
,
2012
, “
Numerical Modeling of Response of a Saturated Porous Seabed Around An Offshore Pipeline Considering Non-Linear Wave and Current Interactions
,”
Appl. Ocean Res.
,
35
, pp.
25
37
. 10.1016/j.apor.2011.12.005
12.
Zhang
,
X. L.
,
Jeng
,
D.-S.
, and
Luan
,
M. T.
,
2011
, “
Dynamic Response of a Porous Seabed Around Pipeline Under Three-Dimensional Wave Loading
,”
Soil Dyn. Earthquake Eng.
,
31
(
5–6
), pp.
785
791
. 10.1016/j.soildyn.2011.01.002
13.
Zhang
,
X. L.
,
Xu
,
C. S.
, and
Han
,
Y.
,
2015
, “
Three-Dimensional Poro-Elasto-Plastic Model for Wave-Induced Seabed Response Around Submarine Pipeline
,”
Soil Dyn. Earthquake Eng.
,
69
, pp.
163
171
. 10.1016/j.soildyn.2014.11.002
14.
Rodi
,
W.
,
1993
,
Turbulence Models and Their Application in Hydraulics-State-of-The-Art Review
, 3rd ed.,
Balkema
,
New York
.
15.
Lin
,
P.
, and
Liu
,
P. L.-F.
,
1999
, “
Internal Wave-Maker for Navier-Stokes Equations Models
,”
J. Waterway, Port, Coastal, Ocean Eng., ASCE
,
125
(
4
), pp.
207
215
. 10.1061/(ASCE)0733-950X(1999)125:4(207)
16.
Liu
,
P. L.-F.
,
Lin
,
P.
,
Chang
,
K. A.
, and
Sakakiyama
,
T.
,
1999
, “
Numerical Modelling of Wave Interaction With Porous Structures
,”
J. Waterway, Port, Coastal, Ocean Eng., ASCE
,
125
(
6
), pp.
322
330
. 10.1061/(ASCE)0733-950X(1999)125:6(322)
17.
Bussmann
,
M.
,
Kothe
,
D. B.
, and
Sicilian
,
J. M.
,
2002
, “
Modeling High Density Ratio Incompressible Interfacial Flows
,”
ASME 2002 Joint U.S.-European Fluids Engineering Division Conference
,
Montreal, Quebec, Canada
.
18.
Barth
,
T. J.
,
1992
, “
Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier-Stokes Equations
,”
Special Course on Unstructured Grid Methods for Advection Dominated Flows
,
NASA Ames Research Center; Moffett Field, CA
.
19.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
. 10.1016/0021-9991(81)90145-5
20.
COMSOL
,
2010
,
COMSOL Multiphysics
, 3rd ed.,
COMSOL, Inc.
,
Sweden
.
21.
Sumer
,
B. M.
, and
Fredsøe
,
J.
,
2002
,
The Mechanism of Scour in the Marine Environment
,
World Scientific
,
New Jersey
.
22.
Liu
,
B.
, and
Jeng
,
D.-S.
,
2013
, “
Laboratory Study for Pore Pressure in Sandy Bed Under Wave Loading
,”
The 23rd (2013) International Offshore and Polar Engineering Conference (ISOPE2013)
,
Anchorage, AK
,
2013
, pp.
1432
1437
.
23.
Zen
,
K.
, and
Yamazaki
,
H.
,
1990
, “
Mechanism of Wave-Induced Liquefaction and Densification in Seabed
,”
Soils Found.
,
30
(
4
), pp.
90
104
. 10.3208/sandf1972.30.4_90
24.
Turcotte
,
B. R.
,
Liu
,
P. L. -F.
, and
Kulhawy
,
F. H.
,
1984
, “
Laboratory Evaluation of Wave Tank Parameters for Wave-Sediment Interaction
,”
Technical Report
,
Joseph F. Defree Hydraulic Laboratory, School of Civil and Environmental Engineering, Cornell University
.
25.
Ulker
,
M. B. C.
,
Rahman
,
M. S.
, and
Guddati
,
M. N.
,
2010
, “
Wave-Induced Dynamic Response and Instability of Seabed Around Caisson Breakwater
,”
Ocean Eng.
,
37
(
17–18
), pp.
1522
1545
. 10.1016/j.oceaneng.2010.09.004
26.
Zhao
,
H. Y.
,
Jeng
,
D.-S.
,
Liao
,
C. C.
, and
Zhu
,
J. F .
,
2017
, “
Three-Dimensional Modeling of Wave-Induced Residual Seabed Response Around a Mono-Pile Foundation
,”
Coastal Eng.
,
128
, pp.
1
21
. 10.1016/j.coastaleng.2017.07.002
27.
Zhao
,
H.-Y.
,
Jeng
,
D.-S.
,
Guo
,
Z.
, and
Zhang
,
J.-S.
,
2014
, “
Two Dimensional Model for Pore Pressure Accumulations in the Vicinity of a Buried Pipeline
,”
ASME J. Offshore Mech. Arct. Eng.
,
136
(
4
), p.
042001
. 10.1115/1.4027955
28.
Zhao
,
H.-Y.
, and
Jeng
,
D.-S.
,
2015
, “
Numerical Study of Wave-Induced Soil Response in a Sloping Seabed Inthe Vicinity of a Breakwater
,”
Appl. Ocean Res.
,
51
, pp.
204
221
. 10.1016/j.apor.2015.04.008
29.
Jeng
,
D.-S.
,
2013
,
Porous Models for Wave-Seabed Interactions
,
Springer
,
New York
.
30.
Li
,
K.
,
Guo
,
Z.
,
Wang
,
L.
, and
Jiang
,
H.
,
2019
, “
Effect of Seepage Flow on Shields Number Around a Fixed and Sagging Pipeline
,”
Ocean Eng.
,
172
, pp.
487
500
. 10.1016/j.oceaneng.2018.12.033
31.
Guo
,
Z.
,
Jeng
,
D.-S.
,
Zhao
,
H. Y.
,
Guo
,
W.
, and
Wang
,
L. Z.
,
2019
, “
Effect of Seepage Flow on Sediment Incipient Motion Around a Free Spanning Pipeline
,”
Coastal Eng.
,
143
, pp.
50
62
. 10.1016/j.coastaleng.2018.10.012
32.
Okusa
,
S.
,
1985
, “
Wave-Induced Stress in Unsaturated Submarine Sediments
,”
Géotechnique
,
35
(
4
), pp.
517
532
.
33.
Jeng
,
D.-S.
, and
Hsu
,
J. R. C.
,
1996
, “
Wave-Induced Soil Response in a Nearly Saturated Seabed of Finite Thickness
,”
Géotechnique
,
46
(
3
), pp.
427
440
.
34.
Zhu
,
J. F.
,
Zhao
,
H. Y.
, and
Jeng
,
D.-S.
,
2019
, “
Dynamic Charactersitics of a Sandy Seabed Under Storm Wave Loading Considering the Effect of Principal Stress Rotation
,”
Eng. Geol.
,
259
, p.
105132
. 10.1016/j.enggeo.2019.05.009
35.
Zhu
,
J. F.
,
Zhao
,
H. Y.
, and
Jeng
,
D.-S.
,
2019
, “
Effects of Principal Stress Rotation on Wave-Induced Soil Response in a Poro-Elastoplastic Sandy Seabed
,”
Acta Geotech.
, pp.
1
23
.
You do not currently have access to this content.