Abstract

This paper assesses the uncertainty in the collapse strength of sandwich pipelines (SPs) under external pressure predicted by various strength models in three categories based on interlayer adhesion conditions. First, the validity of the strength models is verified by comparing their predictions with sandwich pipeline collapse test data and the corresponding model uncertainty factors are derived. Then, a parametric analysis of deterministic collapse strength predictions by models is conducted, illustrating insights of models’ behavior for a wide range of design configurations. Furthermore, the uncertainty among different model predictions is perceived at different configurations of outer and inner pipes and core thicknesses. A case study of a realistic sandwich pipeline is developed, and probabilistic models are defined to basic design parameters. Uncertainty propagation of models’ predictions is assessed by the Monte Carlo simulation method. Finally, the strength model predictions of sandwich pipelines are compared with that of an equivalent single-walled pipe.

References

1.
Pasqualino
,
I. P.
,
Pinheiro
,
B. C.
, and
Estefen
,
S. F.
,
2002
, “
Comparative Structural Analyses between Sandwich and Steel Pipelines for Ultra-Deep Water
,” ASME Paper No. OMAE2002-28455.
2.
Castello
,
X.
, and
Estefen
,
S. F.
,
2006
, “
Adhesion Effect on the Ultimate Strength of Sandwich Pipes
,” ASME Paper No. OMAE2006-92481.
3.
Bhardwaj
,
U.
,
Teixeira
,
A. P.
, and
Guedes Soares
,
C.
,
2020
, “
Reliability Assessment of a Subsea Pipe-in-Pipe System for Major Failure Modes
,”
Int. J. Press. Vessel. Pip.
,
188
, p.
104177
.
4.
Palencia
,
O. G.
,
Teixeira
,
A. P.
, and
Guedes Soares
,
C.
,
2018
, “
Safety of Pipelines Subjected to Deterioration Processes Modeled Through Dynamic Bayesian Networks
,”
ASME J. Offshore Mech. Arct. Eng.
,
141
(
1
), p.
011602
.
5.
Arjomandi
,
K.
, and
Taheri
,
F.
,
2010
, “
Elastic Buckling Capacity of Bonded and Unbonded Sandwich Pipes Under External Hydrostatic Pressure
,”
J. Mech. Mater. Struct.
,
5
(
3
), pp.
391
408
.
6.
Arjomandi
,
K.
, and
Taheri
,
F.
,
2011
, “
A New Look at the External Pressure Capacity of Sandwich Pipes
,”
Mar. Struct.
,
24
(
1
), pp.
23
42
.
7.
Arjomandi
,
K.
, and
Taheri
,
F.
,
2011
, “
Stability and Post-Buckling Response of Sandwich Pipes Under Hydrostatic External Pressure
,”
Int. J. Press. Vessel. Pip.
,
88
(
4
), pp.
138
148
.
8.
Arjomandi
,
K.
, and
Taheri
,
F.
,
2011
, “
The Influence of Intra-Layer Adhesion Configuration on the Pressure Capacity and Optimized Configuration of Sandwich Pipes
,”
Ocean Eng.
,
38
(
17–18
), pp.
1869
1882
.
9.
Sato
,
M.
, and
Patel
,
M. H.
,
2007
, “
Exact and Simplified Estimations for Elastic Buckling Pressures of Structural Pipe-in-Pipe Cross Sections Under External Hydrostatic Pressure
,”
J. Mar. Sci. Technol.
,
12
(
4
), pp.
251
262
.
10.
Yang
,
J.
,
Paz
,
C. M.
,
Estefen
,
S. F.
,
Fu
,
G.
, and
Lourenço
,
M. I.
,
2020
, “
Collapse Pressure of Sandwich Pipes With Strain-Hardening Cementitious Composite—Part 1: Experiments and Parametric Study
,”
Thin-Walled Struct.
,
148
, p.
106605
.
11.
He
,
T.
,
Duan
,
M.
,
Wang
,
J.
,
Lv
,
S.
, and
An
,
C.
,
2015
, “
On the External Pressure Capacity of Deepwater Sandwich Pipes With Inter-Layer Adhesion Conditions
,”
Appl. Ocean Res.
,
52
, pp.
115
124
.
12.
Yang
,
J.
,
Estefen
,
S. F.
,
Fu
,
G.
,
Paz
,
C. M.
, and
Lourenço
,
M. I.
,
2020
, “
Collapse Pressure of Sandwich Pipes With Strain-Hardening Cementitious Composite—Part 2: A Suitable Prediction Equation
,”
Thin-Walled Struct.
,
148
, p.
106606
.
13.
Bhardwaj
,
U.
,
Teixeira
,
A. P.
, and
Guedes Soares
,
C.
,
2020
, “
Uncertainty in Reliability of Thick High Strength Pipelines With Corrosion Defects Subjected to Internal Pressure
,”
Int. J. Press. Vessel. Pip.
,
188
, p.
104170
.
14.
Bhardwaj
,
U.
,
Teixeira
,
A. P.
, and
Guedes Soares
,
C.
,
2020
, “
Quantification of the Uncertainty of Burst Pressure Models of Corroded Pipelines
,”
Int. J. Press. Vessel. Pip.
,
188
, p.
104208
.
15.
Estefen
,
S. F.
,
Netto
,
T. A.
, and
Pasqualino
,
I. P.
,
2005
, “
Strength Analyses of Sandwich Pipes for Ultra Deepwaters
,”
ASME J. Appl. Mech.
,
72
(
4
), pp.
599
608
.
16.
Gong
,
S.
,
Wang
,
X.
,
Zhang
,
T.
, and
Liu
,
C.
,
2018
, “
Buckle Propagation of Sandwich Pipes Under External Pressure
,”
Eng. Struct.
,
175
, pp.
339
354
.
17.
An
,
C.
,
Duan
,
M.
,
Toledo Filho
,
R. D.
, and
Estefen
,
S. F.
,
2014
, “
Collapse of Sandwich Pipes With PVA Fiber Reinforced Cementitious Composites Core Under External Pressure
,”
Ocean Eng.
,
82
, pp.
1
13
.
18.
Teixeira
,
A. P.
,
Palencia
,
O. G.
, and
Guedes Soares
,
C.
,
2018
, “
Reliability Analysis of Pipelines With Local Corrosion Defects Under External Pressure
,”
ASME J. Offshore Mech. Arct. Eng.
,
141
(
5
), p.
051601
.
19.
Guedes Soares
,
C.
,
1997
, “Quantification of Model Uncertainty in Structural Reliability,”
Probabilistic Methods for Structural Design
,
C.
Guedes Soares
, ed.,
Springer
,
Dordrecht
, pp.
17
37
.
20.
Netto
,
T. A.
,
Santos
,
J. M. C.
, and
Estefen
,
S. F.
,
2002
, “
Sandwich Pipes for Ultra-Deep Waters
,”
Proc. Int. Pipeline Conf. IPC
,
B
, pp.
2093
2101
.
21.
Blake
,
J. I. R.
,
Shenoi
,
R. A.
,
Das
,
P. K.
, and
Yang
,
N.
,
2009
, “
The Application of Reliability Methods in the Design of Stiffened FRP Composite Panels for Marine Vessels
,”
Ships Offshore Struct.
,
4
(
3
), pp.
287
297
.
22.
Bhardwaj
,
U.
,
Teixeira
,
A. P.
,
Guedes Soares
,
C.
,
Azad
,
M. S.
,
Punurai
,
W.
, and
Asavadorndeja
,
P.
,
2019
, “
Reliability Assessment of Thick High Strength Pipelines With Corrosion Defects
,”
Int. J. Press. Vessel. Pip.
,
177
, p.
103982
.
23.
DNV
,
2013
,
Submarine Pipeline Systems, Offshore Standard-OS-F101
,
Det Norske Veritas Elendom AS
,
Hovik, Norway
.
You do not currently have access to this content.