Abstract

Surface gravity wave interaction with a novel composite pile–rock breakwater having a stack of porous plates fixed on its top is investigated in the present study. A numerical code based on the dual boundary element method (DBEM) is developed to understand the wave scattering and force coefficients within the framework of linearized potential flow theory. Out of the four different proposed configurations (pile–rock alone, vertical, horizontal, and H-shaped porous plate assembly with pile–rock), it is found that novel H-shaped porous plates with submerged pile–rock are effective in attenuating the wave energy. The parametric study for the H-shaped configuration with several key aspects like permeable plate porosity, horizontal plate's submergence depth, pile–rock relative height, and width of the pile–rock barriers are investigated. It is appropriate to use plate porosity in the range of 10–20% to secure wave transmission of less than 0.5 for a wide range of incident wave periods. By changing the relative submergence of the horizontal porous plate from (h2/h = 0.375–0.125), it is possible to reduce the wave transmission by about 10% but at the expense of increasing the vertical wave force by almost 50–75%. Increasing the pile–rock height (h1/h from 0.75 to 0.25) helps to reduce the wave transmission but significantly increases the horizontal wave force and moment on the perforated H-shaped barrier. The results of the parametric study can be used for optimizing the dimensions of the pile–rock cum porous plate wave barrier for a wide range of field conditions.

References

1.
Isaacson
,
M.
,
Baldwin
,
J.
,
Premasiri
,
S.
, and
Yang
,
G.
,
1999
, “
Wave Interactions With Double-Slotted Barriers
,”
Appl. Ocean Res.
,
21
(
2
), pp.
81
91
.
2.
Liu
,
Y.
,
Li
,
Y.
, and
Teng
,
B.
,
2007
, “
Wave Interaction With a Perforated Wall Breakwater With a Submerged Horizontal Porous Plate
,”
Ocean Eng.
,
34
(
17–18), pp.
2364
2373
.
3.
Huang
,
Z.
,
Li
,
Y.
, and
Liu
,
Y.
,
2011
, “
Hydraulic Performance and Wave Loadings of Perforated/Slotted Coastal Structures: A Review
,”
Ocean Eng.
,
38
(
10
), pp.
1031
1053
.
4.
Jiang
,
X. L.
,
Zou
,
Q. P.
, and
Zhang
,
N.
,
2017
, “
Wave Load on Submerged Quarter-Circular and Semi-Circular Breakwaters Under Irregular Waves
,”
Coastal Eng.
,
121
, pp.
265
277
.
5.
Guo
,
Y. C.
,
Mohapatra
,
S. C.
, and
Guedes Soares
,
C.
,
2020
, “
Review of Developments in Porous Membranes and Net-Type Structures for Breakwaters and Fish Cages
,”
Ocean Eng.
,
200
, p.
107027
.
6.
Koley
,
S.
,
Panduranga
,
K.
, and
Satpathi
,
D. K.
,
2020
, “
Wave Interaction With Caisson Breakwater Placed on Porous Bottom Foundation
,”
AIP Conf. Proc.
,
2277
(
1
), p.
210009
.
7.
Jarlan
,
G. E.
,
1961
, “
A Perforated Vertical Wall Breakwater
,”
Dock Harbour Auth.
,
41
(
486
), pp.
394
398
.
8.
Li
,
A.
,
Li
,
H.
, and
Liu
,
Y.
,
2019
, “
Analytical Study of Oblique Wave Scattering by a Submerged Pile–Rock Breakwater
,”
Proc. Inst. Mech. Eng., Part M: J. Eng. Marit. Environ.
,
233
(
1
), pp.
41
54
.
9.
Liu
,
Y.
, and
Li
,
H.
,
2014
, “
Analysis of Wave Performance Through Pile–Rock Breakwaters
,”
Proc. Inst. Mech. Eng., Part M: J. Eng. Marit Environ.
,
228
(
3
), pp.
284
292
.
10.
Hayashi
,
T.
,
Hattori
,
M.
, and
Shirai
,
M.
,
1968
, “
Closely Spaced Pile Breakwater as a Protection Structure Against Beach Erosion
,”
Coastal Eng. Proc.
,
1
(
11
), p.
39
.
11.
Mani
,
J. S.
, and
Jayakumar
,
S.
,
1995
, “
Wave Transmission by Suspended Pile Breakwaters
,”
J. Waterw. Harbor Coastal Ocean Eng.
,
121
(
6
), pp.
335
338
.
12.
Koraim
,
A. S.
,
Iskander
,
M. M.
, and
Elsayed
,
W. R.
,
2014
, “
Hydrodynamic Performance of Double Rows of Piles Suspending Horizontal C-Shaped Bars
,”
Coastal Eng.
,
84
, pp.
81
96
.
13.
Venkateswarlu
,
V.
,
Praveen
,
K. M.
,
Vijay
,
K. G.
,
Anil
,
K.
, and
Karmakar
,
D.
,
2022
, “
Oblique Wave Interaction With a Two-Layer Pile-Rock Breakwater Placed on the Elevated Bottom
,”
Ships Offshore Struct.
,
17
(
4
), pp.
852
865
.
14.
Laju
,
K.
,
Sundar
,
V.
, and
Sundaravadivelu
,
R.
,
2011
, “
Hydrodynamic Characteristics of Pile Supported Skirt Breakwater Models
,”
Appl. Ocean Res.
,
33
(
1
), pp.
12
22
.
15.
Kriebel
,
D. L.
,
1992
, “
Vertical Wave Barriers: Wave Transmission and Wave Forces
,”
Coastal Eng. Proc.
,
1
(
23
), pp.
1313
1326
.
16.
Sahoo
,
G.
,
Singla
,
S.
, and
Martha
,
S. C.
,
2022
, “
Scattering of Oblique Water Waves by Thick Porous Structure and Thin Elastic Plate
,”
Ocean Eng.
,
248
, p.
110526
.
17.
Cheng
,
Y.
,
Fu
,
L.
,
Dai
,
S. S.
,
Collu
,
M.
,
Cui
,
L.
,
Yuan
,
Z. M.
, and
Incecik
,
A.
,
2022
, “
Experimental and Numerical Analysis of a Hybrid WEC-Breakwater System Combining an Oscillating Water Column and an Oscillating Buoy
,”
Renewable Sustainable Energy Rev.
,
169
, p.
112909
.
18.
Cheng
,
Y.
,
Fu
,
L.
,
Dai
,
S. S.
,
Collu
,
M.
,
Ji
,
C. Y.
,
Yuan
,
Z. M.
, and
Incecik
,
A.
,
2022
, “
Experimental and Numerical Investigation of WEC-Type Floating Breakwaters: A Single-Pontoon Oscillating Buoy and a Dual-Pontoon Oscillating Water Column
,”
Coastal Eng.
,
177
, p.
104188
.
19.
Lee
,
J. F.
, and
Huang
,
S.
,
1996
, “
Wave Interaction With Submerged Porous Structures
,”
Proceedings of the 18th Ocean Engineering Conference
,
Taiwan, China
,
Nov. 9–10
, pp.
273
280
.
20.
Liu
,
Y.
,
Li
,
A.
, and
Fang
,
Z. B.
,
2020
, “
Oblique Wave Scattering by Porous Breakwaters/Seawalls: Novel Analytical Solutions Based on Contour Integral Without Finding Complex Roots
,”
Appl. Ocean Res.
,
101
, p.
102258
.
21.
Isaacson
,
M.
,
Baldwin
,
J.
,
Allyn
,
N.
, and
Cowdell
,
S.
,
2000
, “
Wave Interactions With Perforated Breakwater
,”
J. Waterw., Port, Coastal, Ocean Eng.
,
126
(
5
), pp.
229
235
.
22.
Barman
,
K. K.
, and
Bora
,
S. N.
,
2021
, “
Linear Water Wave Interaction With a Composite Porous Structure in a Two-Layer Fluid Flowing Over a Step-Like Seabed
,”
Geophys. Astrophysical Fluid Dyn.
,
115
(
5–6
), pp.
577
611
,
23.
Han
,
M. M.
, and
Wang
,
C. M.
,
2022
, “
Potential Flow Theory-Based Analytical and Numerical Modelling of Porous and Perforated Breakwaters: A Review
,”
Ocean Eng.
,
249
, p.
110897
.
24.
Chen
,
J. T.
, and
Hong
,
H.
,
1999
, “
Review of Dual Boundary Element Methods with Emphasis on Hypersingular Integrals and Divergent Series
,”
ASME. Appl. Mech. Rev.
,
52
(
1
), pp.
17
33
.
25.
Portela
,
A.
,
Aliabadi
,
M. H.
, and
Rooke
,
D. P.
,
1992
, “
The Dual Boundary Element Method: Effective Implementation for Crack Problems
,”
Int. J. Numer. Methods Eng.
,
33
(
6
), pp.
1269
1287
.
26.
Hong
,
H. K.
, and
Chen
,
J. T.
,
1988
, “
Derivations of Integral Equations of Elasticity
,”
J. Eng. Mech.
,
114
(
6
), pp.
1028
1044
.
27.
Sollitt
,
C. K.
, and
Cross
,
R. H.
,
1972
, “
Wave Transmission Through Permeable Breakwaters
,”
Coastal Eng. Proc.
,
1
(
13
), p.
99
.
28.
Venkateswarlu
,
V.
, and
Karmakar
,
D.
,
2020
, “
Wave Transformation Due to Barrier-Rock Porous Structure Placed on Step-Bottom
,”
Ships Offshore Struct.
,
15
(
8
), pp.
895
909
.
29.
Pérez-Romero
,
D. M.
,
Ortega-Sánchez
,
M.
,
Moñino
,
A.
, and
Losada
,
M. A.
,
2009
, “
Characteristic Friction Coefficient and Scale Effects in Oscillatory Porous Flow
,”
Coastal Eng.
,
56
(
9
), pp.
931
939
.
30.
Suh
,
K. D.
,
Kim
,
Y. W.
, and
Ji
,
C. H.
,
2011
, “
An Empirical Formula for Friction Coefficient of a Perforated Wall With Vertical Slits
,”
Coastal Eng.
,
58
(
1
), pp.
85
93
.
31.
Mackay
,
E.
, and
Johanning
,
L.
,
2020
, “
Comparison of Analytical and Numerical Solutions for Wave Interaction With a Vertical Porous Barrier
,”
Ocean Eng.
,
199
, p.
107032
.
32.
Yu
,
X.
, and
Chwang
,
A.
,
1994
, “
Water Waves Above Submerged Porous Plate
,”
J. Eng. Mech.-ASCE
,
120
(
6
), pp.
1270
1282
.
33.
Yueh
,
C. Y.
, and
Tsaur
,
D. H.
,
1999
, “
Wave Scattering by Submerged Vertical Plate-Type Breakwater Using Composite Bem
,”
Coastal Eng. J.
,
41
(
1999
), pp.
65
83
.
34.
Zhao
,
Y.
,
Liu
,
Y.
,
Li
,
H. J.
, and
Chang
,
A. T.
,
2020
, “
Iterative Dual BEM Solution for Water Wave Scattering by Breakwaters Having Perforated Thin Plates
,”
Eng. Anal. Boundary Elem.
,
120
, pp.
95
106
.
35.
Chen
,
J. T.
,
Yueh
,
C. Y.
,
Chang
,
Y. L.
, and
Wen
,
C. C.
,
2017
, “
Why Dual Boundary Element Method Is Necessary?
Eng. Anal. Boundary Elem.
,
76
, pp.
59
68
.
You do not currently have access to this content.