Abstract

Three forms of the mooring system in 60 m water depth are proposed for semi-submersible with partially inclined columns (SPIC) concept floating wind turbine (FWT). One is a simple form with only catenary lines, and the other two are hybrid forms including clump weights. The clumps are attached to the suspended section for Hybrid form1 and the bottom section for Hybrid form2. Hybrid form2 achieves the smallest line length and chain weight. Three alternative proposals can be evaluated through mooring line characteristics, dynamic responses, utilization factors, and simple cost analysis. Hybrid form2 allows for smallest pretension, and largest stiffness and nonlinearity only at large offsets. Under operational conditions, the mean surge for Hybrid form1 and Hybrid form2 is similar, but the fairlead tension is significantly smaller for Hybrid form2. Under the survival condition, the clumps of Hybrid form2 are lifted up and put down, leading to small mean offsets of FWT but large wave-frequency components of line tension. Among the three forms of the mooring system, the Hybrid form2 can limit the FWT to the smallest offset range while also controlling the mean mooring line tension to a level similar to the other two forms. Under normal working conditions and accidental conditions with single line broken, the maximal surge motions of FWT under the restraint of three mooring systems all meet the design requirements. The mooring line strength of the three mooring systems meets the requirements in ultimate limit state (ULS) and accidental limit state (ALS) analyses. Among them, the utilization coefficient of Hybrid form2 is closest to 1, demonstrating its best economic performance.

References

1.
Liu
,
Y.
,
Li
,
S.
,
Yi
,
Q.
, and
Chen
,
D.
,
2016
, “
Developments in Semi-Submersible Floating Foundations Supporting Wind Turbines: A Comprehensive Review
,”
Renew. Sustain. Energy Rev.
,
60
, pp.
433
449
.
2.
Nagababu
,
G.
,
Kachhwaha
,
S. S.
, and
Savsani
,
V.
,
2017
, “
Estimation of Technical and Economic Potential of Offshore Wind Along the Coast of India
,”
Energy
,
138
, pp.
79
91
.
3.
DNV
,
2014
, “
Design of Offshore Wind Turbine Structures
,” DNVGL.
4.
Goupee
,
A. J.
,
Koo
,
B. J.
,
Kimball
,
R. W.
,
Lambrakos
,
K. F.
, and
Dagher
,
H. J.
,
2014
, “
Experimental Comparison of Three Floating Wind Turbine Concepts
,”
ASME J. Offshore Mech. Arct. Eng.
,
136
(
2
), p.
020906
.
5.
Xu
,
K.
,
Gao
,
Z.
, and
Moan
,
T.
,
2018
, “
Effect of Hydrodynamic Load Modelling on the Response of Floating Wind Turbines and Its Mooring System in Small Water Depths
,”
J. Phys.: Conf. Ser.
,
1104
(
1
), p.
012006
.
6.
Zhang
,
L.
,
Michailides
,
C.
,
Wang
,
Y.
, and
Shi
,
W.
,
2020
, “
Moderate Water Depth Effects on the Response of a Floating Wind Turbine
,”
Structures
,
28
, pp.
1435
1448
.
7.
Wang
,
S.
,
Moan
,
T.
, and
Gao
,
Z.
,
2023
, “
Methodology for Global Structural Load Effect Analysis of the Semi-Submersible Hull of Floating Wind Turbines Under Still Water, Wind, and Wave Loads
,”
Marine Struct.
,
91
, p.
103463
.
8.
Wang
,
S.
,
Xing
,
Y.
, and
Balakrishna
,
R.
,
2023
, “
Design, Local Structural Stress, and Global Dynamic Response Analysis of a Steel Semi-Submersible Hull for a 10-MW Floating Wind Turbine
,”
Eng. Struct.
,
291
, p.
116474
.
9.
Xu
,
K.
,
Moan
,
T.
,
Gao
,
Z.
, and
Michailides
,
C.
,
2015
, “
Design and Analysis of Mooring System for Semi-Submersible Floating Wind Turbines in Shallow Water
,” NTNU Master Thesis Poster Exhibition,
NTNU, Trondheim
.
10.
Lin
,
Z.
,
Liu
,
X.
, and
Lotfian
,
S.
,
2021
, “
Impacts of Water Depth Increase on Offshore Floating Wind Turbine Dynamics
,”
Ocean Eng.
,
224
, p.
108697
.
11.
Brommundt
,
M.
,
Krause
,
L.
,
Merz
,
K.
, and
Muskulus
,
M.
,
2012
, “
Mooring System Optimization for Floating Wind Turbines Using Frequency Domain Analysis
,”
Energy Proc.
,
24
, pp.
289
296
.
12.
Benassai
,
G.
,
Campanile
,
A.
,
Piscopo
,
V.
, and
Scamardella
,
A.
,
2014
, “
Mooring Control of Semi-sSubmersible Structures for Wind Turbines
,”
Procedia Eng.
,
70
, pp.
132
141
.
13.
Benassai
,
G.
,
Campanile
,
A.
,
Piscopo
,
V.
, and
Scamardella
,
A.
,
2014
, “
Ultimate and Accidental Limit State Design for Mooring Systems of Floating Offshore Wind Turbines
,”
Ocean Eng.
,
92
, pp.
64
74
.
14.
Benassai
,
G.
,
Campanile
,
A.
,
Piscopo
,
V.
, and
Scamardella
,
A.
,
2015
, “
Optimization of Mooring Systems for Floating Offshore Wind Turbines
,”
Coastal Eng. J.
,
57
(
4
), p.
1550021
.
15.
Campanile
,
A.
,
Piscopo
,
V.
, and
Scamardella
,
A.
,
2018
, “
Mooring Design and Selection for Floating Offshore Wind Turbines on Intermediate and Deep Water Depths
,”
Ocean Eng.
,
148
, pp.
349
360
.
16.
Li
,
J.
,
Zhang
,
Q.
,
Du
,
J.
, and
Jiang
,
Y.
,
2020
, “
Parametric Study of Catenary Mooring System for a Semisubmersible Floating Wind Turbine in Intermediate Water Depth
,”
International Conference on Offshore Mechanics and Arctic Engineering
,
Virtual, Online
,
Aug. 3–7
,
vol. 84416
, p.
V009T09A052
.
17.
ABS
,
2013
, “
Guide for Building and Classing Floating Offshore Wind Turbine Installations
,” The American Bureau of Shipping, Houston, TX.
18.
BV
,
2019
, “
Classification and Certification of Floating Offshore Wind Turbines
,”
Rule Note NI 572 DT R02 E
.
19.
Vicente
,
P. C.
,
Falcão
,
A.
, and
Justino
,
P.
,
2011
, “
Slack-Chain Mooring Configuration Analysis of a Floating Wave Energy Converter
,”
Proceedings of the 26th International Workshop on Water Waves and Floating Bodies
,
Athens, Greece
,
Apr. 17–20
,
17
, pp.
36
40
.
20.
Yuan
,
Z.
,
Incecik
,
A.
, and
Ji
,
C.
,
2014
, “
Numerical Study on a Hybrid Mooring System With Clump Weights and Buoys
,”
Ocean Eng.
,
88
, pp.
1
11
.
21.
Liu
,
Z.
,
Tu
,
Y.
,
Wang
,
W.
, and
Qian
,
G.
,
2019
, “
Numerical Analysis of a Catenary Mooring System Attached by Clump Masses for Improving the Wave-Resistance Ability of a Spar Buoy-Type Floating Offshore Wind Turbine
,”
Appl. Sci.
,
9
(
6
), p.
1075
.
22.
Barbanti
,
G.
,
Marino
,
E.
, and
Borri
,
C.
,
2018
, “
Mooring System Optimization for a Spar-Buoy Wind Turbine in Rough Wind and Sea Conditions
,”
Conference of the Italian Association for Wind Engineering
,
Napoli, Italy
,
Sept. 9–12
, Springer, pp.
87
98
.
23.
Bruschi
,
N.
,
Ferri
,
G.
,
Marino
,
E.
, and
Borri
,
C.
,
2020
, “
Influence of Clumps-Weighted Moorings on a Spar Buoy Offshore Wind Turbine
,”
Energies
,
13
(
23
), p.
6407
.
24.
Xu
,
K.
,
Larsen
,
K.
,
Shao
,
Y.
,
Zhang
,
M.
,
Gao
,
Z.
, and
Moan
,
T.
,
2021
, “
Design and Comparative Analysis of Alternative Mooring Systems for Floating Wind Turbines in Shallow Water With Emphasis on Ultimate Limit State Design
,”
Ocean Eng.
,
219
, p.
108377
.
25.
Azcona
,
J.
,
Vittori
,
F.
,
Schmidt
,
U.
,
Svanije
,
F.
,
Kapogiannis
,
G.
,
Karvelas
,
X.
,
Manolas
,
D.
, et al
,
2017
, “
Deliverable D4.3.7 Design Solutions for 10 MW Floating Offshore Wind Turbines
,”
INNWIND.EU
,
4
, pp.
37
57
.
26.
Pegalajar
,
A.
,
Madsen
,
F.
,
Borg
,
M.
, and
Bredmose
,
H.
,
2017
, “
Deliverable D4. 5 State of the Art Models for the Two LIFES50+ 10MW Floater Concepts
,”
LIFES50+
,
8
, pp.
33
50
.
27.
Faltinsen
,
O.
,
1993
,
Sea Loads on Ships and Offshore Structures
,
Cambridge University Press
.
Cambridge
.
28.
API
,
2005
, “
Design and Analysis of Station Keeping Systems for Floating Structures
,”
API Recommended Practice 2SK
.
29.
DNV
,
2013
, “
Offshore Mooring Chain
,”
Offshore Standard
.
30.
Cao
,
Q.
,
Xiao
,
L.
,
Guo
,
X.
, and
Liu
,
M.
,
2020
, “
Second-Order Responses of a Conceptual Semi-Submersible 10 MW Wind Turbine Using Full Quadratic Transfer Functions
,”
Renew. Energy
,
153
, pp.
653
668
.
31.
Bak
,
C.
,
Zahle
,
F.
,
Bitsche
,
R.
,
Kim
,
T.
,
Yde
,
A.
,
Henriksen
,
L. C.
,
Hansen
,
M. H.
,
Blasques
,
J. P. A. A.
,
Gaunaa
,
M.
, and
Natarajan
,
A.
,
2013
, “
The DTU 10-MW Reference Wind Turbine
,” Danish Wind Power Research 2013.
32.
Cao
,
Q.
,
Xiao
,
L.
,
Cheng
,
Z.
,
Liu
,
M.
, and
Wen
,
B.
,
2020
, “
Operational and Extreme Responses of a New Concept of 10 MW Semi-Submersible Wind Turbine in Intermediate Water Depth: An Experimental Study
,”
Ocean Eng.
,
217
, p.
108003
.
33.
Cao
,
Q.
,
Xiao
,
L.
,
Cheng
,
Z.
, and
Liu
,
M.
,
2021
, “
Dynamic Responses of a 10 MW Semi-Submersible Wind Turbine at an Intermediate Water Depth: A Comprehensive Numerical and Experimental Comparison
,”
Ocean Eng.
,
232
, pp.
109
138
.
34.
Jonkman
,
B.
, and
Jonkman
,
J.
,
2016
, “
Fast v8.16.00 a-bjj
,”
National Renewable Energy Laboratory (NREL)
, Golden, CO.
35.
DNVGL
,
2014
, “
Environmental Conditions and Environmental Loads
,” Recommend Practice DNV-RP-C205.
36.
Abbas
,
N. J.
,
Wright
,
A.
, and
Pao
,
L.
,
2020
, “
An Update to the NREL Baseline Wind Turbine Controller
,”
J. Phys.: Conf. Ser.
,
1452
(
1
), p.
012002
.
37.
Hall
,
M.
, and
Goupee
,
A.
,
2015
, “
Validation of a Lumped-Mass Mooring Line Model With Deepcwind Semisubmersible Model Test Data
,”
Ocean Eng.
,
104
, pp.
590
603
.
38.
Cao
,
Q.
,
Bachynski
,
E.
,
Gao
,
Z.
,
Xiao
,
L.
,
Cheng
,
Z.
, and
Liu
,
M.
,
2022
, “
Analysis of a Hybrid Mooring System Concept for Wind Turbine in Intermediate Water Depth Under Operational, Extreme, and Yaw Error Conditions
,”
ASME 2022 41th International Conference on Ocean, Offshore and Arctic Engineering
,
Hamburg, Germany
,
June 5–10
, pp.
89
100
.
39.
Naess
,
A.
, and
Moan
,
T.
,
2013
,
Stochastic Dynamics of Marine Structures
,
Cambridge University Press
,
Cambridge
.
40.
Naess
,
A.
, and
Gaidai
,
O.
,
2008
, “
Monte Carlo Methods for Estimating the Extreme Response of Dynamical Systems
,”
J. Eng. Mech.
,
134
(
8
), pp.
628
636
.
41.
Bjerkseter
,
C.
, and
Ågotnes
,
A.
,
2013
, “
Levelised Costs of Energy for Offshore Floating Wind Turbine Concepts
,” Master’s thesis, Norwegian University of Life Sciences, Oslo, Norway.
You do not currently have access to this content.