Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Fatigue analyses of flexible pipes through the application of long-term response statistics, when considering bimodal seas, are particularly challenging due to the excessive computational costs involved, since they require, generally, to solve numerically a four-dimensional integral associated with time-domain finite element-based analyses of the flexible pipe. This paper investigates different dimension-reduction methods (DRMs) as effective approaches to compute fatigue damage of these structures. The performance of the DRMs was compared with that of the Monte Carlo simulation method (MCSM). Two case studies are presented: a 4 in., and a 7 in., flexible riser connected to a semi-submersible, and a spread-moored floating production storage and offloading unit platform, respectively. The studies demonstrated that some DRMs presented accurate results, exhibiting high efficacy with errors below 3%. Furthermore, the bivariate dimension-reduction method required only 18% of the computational cost associated with the standard Gauss–Hermite quadrature in space R4 (without any reduction), or much less when compared to the MCSM.

References

1.
Monsalve-Giraldo
,
J. S.
,
2014
, “
Efficient Methods for Probabilistic Fatigue Analysis of Marine Structures
,”
M.Sc. dissertation
,
Department of Civil Engineering, COPPE, Federal University of Rio de Janeiro
,
Rio de Janeiro, Brazil
.
2.
Monsalve-Giraldo
,
J. S.
,
Dantas
,
C. M. S.
, and
Sagrilo
,
L. V. S.
,
2016
, “
Probabilistic Fatigue Analysis of Marine Structures Using the Univariate Dimension-Reduction Method
,”
Mar. Struct.
,
50
, pp.
189
204
.
3.
Ibarra
,
M. A. C.
,
Sagrilo
,
L. V. S.
,
Simão
,
L. M.
, and
Videiro
,
P. M.
,
2022
, “
Long-Term Fatigue Analysis of Mooring Lines Considering Wind-Sea and Swell Waves Using the Univariate Dimension-Reduction Method
,”
Appl. Ocean Res.
,
118
, p.
102997
.
4.
Ibarra
,
M. A. C.
,
2022
, “
Fatigue Analysis of Mooring Lines Considering Wind-Sea and Swell Waves Using the Univariate Dimension-Reduction Method
,”
D.Sc. thesis
,
Civil Engineering Department, COPPE, Federal University of Rio de Janeiro
,
Rio de Janeiro, Brazil
.
5.
Ruschel
,
A.
,
2021
, “
Método da Redução de Dimensão Univariada Aplicado na Análise de Fadiga de Estruturas de Cabeças de Poços de Petróleo Considerando o Efeito Simultâneo de Ondas de Mar Local e de Swell
,”
M.Sc. dissertation
,
Department of Civil Engineering, COPPE, Federal University of Rio de Janeiro
,
Rio de Janeiro, Brazil
. (In Portuguese).
6.
Ruschel
,
A.
,
Dantas
,
C. M. S.
,
Sousa
,
F. J. M.
,
Sagrilo
,
L. V. S.
,
Percy
,
J. G.
, and
Oliveira
,
F. L.
,
2021
, “
Wellhead Fatigue Analysis Considering the Effect of Wind-Sea and Swell Waves by Using Univariate Dimension Reduction Method
,”
J. Pet. Sci. Eng.
,
206
, p.
108989
.
7.
Matsuiski
,
M.
, and
Endo
,
T.
,
1968
, “
Fatigue of Metals Subject to Varying Stress
,”
J. Soc. Mech. Eng., Fukuoka, Japan
,
68
(
2
), pp.
37
40
.
8.
Miner
,
M. A.
,
1945
, “
Cumulative Damage in Fatigue
,”
ASME J. Appl. Mech.
,
12
(
3
), pp.
A159
A164
.
9.
Palmgren
,
A.
,
1971
,
The Service Life of Ball Bearings (Palmgren, A., Trans.). NASA Technical Translation, NASA TT F-13460
,
National Aeronautics and Space Administration
,
Washington, DC
. (Original Work Published 1924).
10.
Abramowitz
,
M.
, and
Stegun
,
I. A.
,
1972
,
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
,
Dover
,
New York
, pp.
887
890
. NBS Applied Mathematics Series 55, National Bureau of Standards. Washington, DC. 10th Printing.
11.
Gao
,
Y.
, and
Low
,
M. Y.
,
2014
, “
Long-Term Fatigue Analysis of Deepwater Risers in the Time-Domain
,”
Proceedings of the 33rd OMAE Conference
,
San Francisco, CA
,
June 8–13
, Paper No. OMAE2014-24664.
12.
Monsalve-Giraldo
,
J. S.
,
2018
, “
Parametric Interpolation Method for Long-Term Extreme Response and Probabilistic Fatigue Prediction of Offshore Structures
,”
D.Sc. thesis
,
Civil Engineering Department, COPPE, Federal University of Rio de Janeiro
,
Rio de Janeiro, Brazil
.
13.
Low
,
Y. M.
, and
Cheung
,
S. H.
,
2012
, “
On the Long-Term Fatigue Assessment of Mooring and Riser Systems
,”
Ocean Eng.
,
53
, pp.
60
71
.
14.
Pereira
,
L. O. C. M.
,
Videiro
,
P. M.
, and
Sagrilo
,
L. V. S.
,
2019
, “
Simplifying Methods for Fatigue Analysis of Risers
,”
Proceedings of the 38th International Conference on Ocean, Offshore and Arctic Engineering (OMAE)
,
Glasgow, UK
,
June 9–14
, ASME, p. V003T02A087.
15.
Guo
,
Y.
,
Wang
,
S.
,
Guo
,
H.
, and
Song
,
X.
,
2023
, “
A Novel Wave Energy Equivalence Based Lumping Block Method for Efficiently Predicting the Fatigue Damage of Mooring Lines
,”
J. Mar. Sci. Eng.
,
11
(
9
), p.
1679
.
16.
Katsikogiannis
,
G.
,
Sørum
,
S. H.
,
Bachynski
,
E. E.
, and
Amdahl
,
J.
,
2021
, “
Environmental Lumping for Efficient Fatigue Assessment of Large-Diameter Monopile Wind Turbines
,”
Mar. Struct.
,
77
, p.
102939
.
17.
Katsikogiannis
,
G.
,
Hegseth
,
J. M.
, and
Bachynski-Polić
,
E. E.
,
2022
, “
Application of a Lumping Method for Fatigue Design of Monopile-Based Wind Turbines Using Fully Coupled and Simplified Models
,”
Appl. Ocean Res.
,
120
, p.
102998
.
18.
Katsikogiannis
,
G.
,
2024
, “
Estimation of Long-Term Fatigue and Extreme Responses of Large-Diameter Monopiles for Offshore Wind Turbines
,”
Doctoral thesis
,
NTNU, Norwegian University of Science and Technology, Department of Marine Technology
,
Trondhein, Norway
.
19.
Chen
,
R.
, and
Low
,
Y. M.
,
2021
, “
Reducing Uncertainty in Time-Domain Fatigue Analysis of Offshore Structures Using Control Variates
,”
Mech. Syst. Signal Process.
,
149
, p.
107192
.
20.
Queiroz
,
D. F. C. S.
,
Sagrilo
,
L. V. S.
, and
Ibarra
,
M. A. C.
,
2022
, “
Análise de Fadiga Estocástica Usando Simulação Monte Carlo com Variáveis de Controle
,”
Anais do 29º Congresso Internacional de Transporte Aquaviário, Construção Naval e Offshore (SOBENA)
,
Rio de Janeiro, Brazil
,
Oct. 25–27
.
21.
Papadimitriou
,
C.
,
Katafygiotis
,
L. S.
, and
Beck
,
J. L.
,
1997
, “
Asymptotic Expansions for Reliability and Moments of Uncertain Systems
,”
J. Eng. Mech.
,
123
(
12
), pp.
1219
1229
.
22.
Koyluoglu
,
H. U.
,
1995
, “
Stochastic Response and Reliability Analyses of Structures With Randon Properties Subject to Stationary Randon Excitation
,”
D.Sc. thesis
,
Department of Civil Engineering and Operations Research, Princeton University
,
Princeton, NJ
.
23.
Rahman
,
S.
, and
Xu
,
H.
,
2004
, “
A Univariate Dimension-Reduction Method for Multi-dimensional Integration in Stochastic Mechanics
,”
Probab. Eng. Mech.
,
19
(
4
), pp.
393
408
.
24.
Rahman
,
S.
, and
Xu
,
H.
,
2004
, “
A Generalized Dimension-Reduction Method for Multidimensional Integration in Stochastic Mechanics
,”
Int. J. Numer. Methods Eng.
,
61
(
12
), pp.
1992
2019
.
25.
Zhang
,
X.
, and
Pandey
,
M. D.
,
2013
, “
Structural Reliability Analysis Based on the Concepts of Entropy, Fractional Moment and Dimensional Reduction Method
,”
Struct. Saf.
,
43
, pp.
28
40
.
26.
Xu
,
J.
, and
Dang
,
C.
,
2019
, “
A New Bivariate Dimension Reduction Method for Efficient Structural Reliability Analysis
,”
Mech. Syst. Signal Process.
,
115
, pp.
281
300
.
27.
Xu
,
J.
, and
Zhou
,
L.
,
2020
, “
An Adaptive Trivariate Dimension-Reduction Method for Statistical Moments Assessment and Reliability Analysis
,”
Appl. Math. Model.
,
82
, pp.
748
765
.
28.
Chen
,
D.
, and
Xu
,
J.
,
2020
, “
An Improved Adaptive Bivariate Dimension-Reduction Method for Efficient Statistical Moment and Reliability Evaluations
,”
Mech. Syst. Signal Process.
,
149
, p.
107309
.
29.
Melchers
,
R. E.
,
2001
,
Structural Reliability Analysis and Prediction
, 2nd ed.,
The University of Newcastle
,
Callaghan, Australia
, pp.
118
122
.
30.
Rosenblatt
,
M.
,
1952
, “
Remarks on a Multivariate Transformation
,”
Ann. Math. Stat.
,
23
(
3
), pp.
470
472
.
31.
Nataf
,
A.
,
1962
, “
Détermination des Distributions de Probabilités Dont les Marges Sont Données
,”
C. R. Acad. Sci., A
,
225
, pp.
42
43
.
32.
Mourelle
,
M. M.
,
Gonzalez
,
E. C.
, and
Jacob
,
B. P.
,
1995
, “
ANFLEX – Computational System for Flexible and Rigid Riser Analysis
,”
Proceedings of the 9th International Symposium on Offshore Engineering
,
Rio de Janeiro, Brazil
,
Jan. 1, Wiley
,
Chichester
, pp.
441
458
.
33.
Mourelle
,
M. M.
,
1993
, “
Análise Dinâmica de Sistemas Estruturais Constituídos por Linhas Marítimas
,”
D.Sc. thesis
,
COPPE, Federal University of Rio de Janeiro
,
Rio de Janeiro, Brazil
. (In Portuguese).
34.
American Petroleum Institute
,
2014
,
Recommended Practice for Flexible Pipe (API RP 17B)
, 5th ed.,
API Publishing Services
,
Washington, DC
.
35.
American Petroleum Institute
,
2014
,
Specification for Unbonded Flexible Pipe (API SPEC 17J)
, 4th ed.,
API Publishing Services
,
Washington, DC
.
36.
Det Norske Veritas
,
2018
,
Dynamic Risers, Standard (DNV GL-ST-F201)
, Jan. ed.,
Høvik, Norway
.
37.
Det Norske Veritas
,
2019
,
Riser Fatigue, Recommended Practice (DNV GL-RP-F204)
, Sept. ed.,
Høvik, Norway
.
38.
International Organization for Standardization
,
2009
,
Petroleum and Natural Gas Industries – Design and Operation of Subsea Production Systems – Part 11: Flexible Pipe Systems for Subsea and Marine Applications (ISO 13628-11)
,
IHS Market
,
Switzerland
.
39.
International Organization for Standardization
,
2006
,
Petroleum and Natural Gas Industries – Design and Operation of Subsea Production Systems – Part 2: Unbonded Flexible Pipe Systems for Subsea and Marine Applications (ISO 13628-2)
,
IHS Market
,
Switzerland
.
40.
Chakrabarti
,
S. K.
,
1987
,
Hydrodynamics of Offshore Structures. Computational Mechanics Publications
,
Springer-Verlag
,
London
.
41.
Fergestad
,
D.
, and
Løtveit
,
S. A.
,
2014
,
Handbook on Design and Operation of Flexible Pipes. MARINTEK/NTNU/4Subsea. Joint Industry Project: “Safe and Cost Effective Operation of Flexible Pipes”
, Vol.
1
,
Trondheim
,
Norway
.
42.
Madsen
,
H. O.
,
Krenk
,
S.
, and
Lind
,
N. C.
,
1986
,
Methods of Structural Safety
,
Dover
,
New York
.
43.
Ochi
,
M. K.
,
1998
,
Ocean Waves – The Stochastic Approach. Cambridge Ocean Technology Series 6
, Vol.
19
,
University of Cambridge
,
Cambridge, UK
.
44.
Sousa
,
F. J. M.
,
Sousa
,
J. R. M.
,
Siqueira
,
M. Q.
,
Sagrilo
,
L. V. S.
, and
Lemos
,
C. A. D.
,
2009
, “
A Methodology to Evaluate the Fatigue Life of Flexible Pipes
,”
Proceedings of the Rio Pipeline Conference
,
Rio de Janeiro, Brazil
,
Sept. 22–24
.
45.
Viana
,
V. C.
,
2015
, “
Artificial Neural Networks Applied to the Analysis of Flexible Pipes
,”
Master's dissertation
,
Civil Engineering Department, COPPE, Federal University of Rio de Janeiro
,
Rio de Janeiro, Brazil
.
46.
Loureiro
,
F. F. S.
,
2008
, “
Metodologia Para Análise de Fadiga de Dutos Flexíveis Baseada em Confiabilidade Estrutural
,”
M.Sc. dissertation
,
Department of Civil Engineering, COPPE, Federal University of Rio de Janeiro
,
Rio de Janeiro, Brazil
. (In Portuguese).
47.
Rodrigues
,
T. C.
,
2022
, “
Fatigue Analysis of Flexible Risers Assisted by Recurrent Neural Networks
,”
Master’s dissertation
,
Civil Engineering Department, COPPE, Federal University of Rio de Janeiro
,
Rio de Janeiro, Brazil
.
48.
Sousa
,
J. R. M.
,
Sousa
,
F. J. M.
,
Siqueira
,
M. Q.
,
Sagrilo
,
L. V. S.
, and
Lemos
,
C. A. D.
,
2012
, “
A Theoretical Approach to Predict the Fatigue Life of Flexible Pipes
,”
J. Appl. Math.
,
2012
(
1
), p.
983819
.
49.
Svoren
,
D. F.
,
2013
, “
Fatigue Analysis of Flexible Risers, A Comparative Study of Different Models for Metal Fatigue in Flexible Risers
,”
Master thesis
,
NTNU, Norwegian University of Science and Technology, Department of Marine Technology
,
Trondhein, Norway
.
50.
Estrier
,
P.
,
1992
, “
Updated Method for the Determination of the Service Life of Flexible Risers
,”
Proceedings of the First European Conference on Flexible Pipes, Umbilicals and Marine Cables (MARINFLEX)
,
London, UK
,
Nov. 10–11
.
51.
Fylling
,
I.
, and
Bech
,
A.
,
1991
, “
Effects of Internal Friction and Torque Stiffness on the Global Behavior of Flexible Risers and Umbilicals
,”
Proceedings of the 10th International Conference on Ocean, Offshore and Arctic Engineering (OMAE)
,
Stavanger, Norway
,
June 23–28
.
52.
Sousa
,
J. R. M.
,
2005
, “
Análise Local de Linhas Flexíveis Pelo Método de Elementos Finitos
,”
D.Sc. thesis
,
Civil Engineering Department, COPPE, Federal University of Rio de Janeiro
,
Rio de Janeiro, Brazil
. (In Portuguese).
53.
de Sousa
,
J. R. M.
,
Magluta
,
C.
,
Roitman
,
N.
,
Ellwanger
,
G. B.
,
Lima
,
E. C. P.
, and
Papaleo
,
A.
,
2009
, “
On the Response of Flexible Risers to Loads Imposed by Hydraulic Collars
,”
Appl. Ocean Res.
,
31
(
3
), pp.
157
170
.
54.
Lemos
,
H. B.
,
2012
, “
Análise Estocástica da Resposta Analítica de Riser Vertical Ancorado por Amarras
,”
M.Sc. dissertation
,
Department of Civil Engineering, COPPE, Federal University of Rio de Janeiro
,
Rio de Janeiro, Brazil
. (In Portuguese).
55.
Det Norske Veritas
,
2014
,
Environmental Conditions and Environmental Loads, Recommended Practice (DNV GL-RP-C205)
,
Høvik, Norway
.
You do not currently have access to this content.