Abstract

An interlocking L-shaped caisson (ILC) quay wall was proposed to improve the integrity of the caisson units by modifying the cross-sectional of the conventional L-shaped caisson (CLC) with two walls at its edge, shaped like a half hexagonal prism. A series of model tests were constructed to investigate the lateral stabilities of the proposed ILC quay wall by comparing with those of the CLC quay wall. Compared to the CLC quay wall, it was found that the critical bearing capacities of the ILC quay wall pinned by concrete blocks increased by 13% under strip load. The ILC quay wall demonstrates better structural integrity and load-bearing capacity. The plane strain method used in CLC quay wall design under concentrated loads overestimates the critical bearing capacity of the quay wall by approximately 47%. The lateral earth pressure on the caisson sidewall calculated using a modified Beton's method aligns closely with the average measured data. However, it underestimates the estimated value at a depth of 0.6 times the caisson height under concentrated loading.

References

1.
Del Campo
,
J. M.
, and
Negro
,
V.
,
2011
, “
Failures of Harbour Walls at Malaga and Barcelona
,”
Bull. Eng. Geol. Environ.
,
70
(
1
), pp.
1
6
.
2.
Cejuela
,
E.
,
Negro
,
V.
,
del Campo
,
J. M.
,
Martín-Antón
,
M.
,
Esteban
,
M. D.
, and
López-Gutiérrez
,
J. S.
,
2018
, “
Recent History, Types, and Future of Modern Caisson Technology: The Way to More Sustainable Practices
,”
Sustainability
,
10
(
11
), p.
3839
.
3.
Nishimura
,
S.
,
Takahashi
,
H.
, and
Morikawa
,
Y.
,
2012
, “
Observations of Dynamic and Nondynamic Interactions Between a Quay Wall and Partially Stabilized Backfill
,”
Soils Found.
,
52
(
1
), pp.
81
98
.
4.
Yuksel
,
Y.
,
Yuksel
,
Z.
,
Cevik
,
E.
,
Orhan
,
K.
, and
Berilgen
,
M.
,
2017
, “
Evaluation of the Seismic Performance of a Caisson and an L-Type Quay Wall
,”
Soil Dyn. Earthquake Eng.
,
92
, pp.
537
550
.
5.
Shiozaki
,
Y.
,
Sugano
,
T.
, and
Shiraishi
,
N.
,
2002
, “
Shaking Table Tests on the Dynamic Behavior of Cantilever Quay Walls
,”
Proceedings of the 11th Japan Earthquake Engineering Symposium
,
Tokyo, Japan
,
Nov. 20-22
.
6.
Dakoulas
,
P.
, and
Gazetas
,
G.
,
2008
, “
Insight Into Seismic Earth and Water Pressures Against Caisson Quay Walls
,”
Géotechnique
,
58
(
2
), pp.
95
111
.
7.
Davies
,
P. R. E.
, and
McIlquham
,
J. D.
,
2011
, “
Geotechnical Design for the Port Botany Expansion Project, Sydney
,”
Proc. Inst. Civ. Eng.: Geotech. Eng.
,
164
(
3
), pp.
149
167
.
8.
Ülker
,
M.
, and
Baksı
,
H.
,
2022
, “
Modelling of Dynamic Response and Instability of Caisson-Type Quay Wall–Soil System Under Waves
,”
Geotech. Res.
,
9
(
2
), pp.
95
115
.
9.
Lee
,
K.
,
Kim
,
D.
, and
Kim
,
T.
,
2015
, “
Extreme Case Study of Quay Wall Stability Under Earthquake and Tsunami
,”
Mar. Georesour. Geotechnol.
,
33
(
6
), pp.
504
520
.
10.
Leung
,
C. F.
,
Lee
,
F. H.
, and
Khoo
,
E.
,
1997
, “
Behavior of Gravity Caisson on Sand
,”
J. Geotech. Geoenviron. Eng.
,
123
(
3
), pp.
187
196
.
11.
Khelalfa
,
H.
,
2019
, “
Preloading of Harbor's Quay Walls to Improve Marine Subsoil Capacity
,”
J. Mater. Eng. Struct.
,
6
(
3
), pp.
305
322
.
12.
Chen
,
S.
,
Guo
,
W.
, and
Ren
,
Y.
,
2024
, “
Numerical Studies on the Stability of Caisson Quay Wall
,”
Ocean Eng.
,
296
, p.
116892
.
13.
Garcia-Espinel
,
J. D.
,
Alvarez-Garcia-Luben
,
R.
,
Gonzalez-Herrero
,
J. M.
, and
Castro-Fresno
,
D.
,
2015
, “
Glass Fiber-Reinforced Polymer Caissons Used for Construction of Mooring Dolphins in Puerto del Rosario Harbor (Fuerteventura, Canary Islands)
,”
Coastal Eng.
,
98
, pp.
16
25
.
14.
Korff
,
B.
,
2017
, “
The Overturning Caisson: Construction Method Reconsidered
,” Master thesis,
Delft University of Technology
,
Delft, Netherlands
.
15.
Guo
,
W.
,
Huang
,
J.
,
Chen
,
S.
, and
Ren
,
Y.
,
2023
, “
Experimental Study on the Stability of L-Shaped Hybrid Quay Wall in Sand
,”
Ocean Eng.
,
280
, p.
114851
.
16.
Job
,
S.
,
Leeke
,
G.
,
Mativenga
,
P.
,
Oliveux
,
G.
,
Pickering
,
S.
, and
Shuaib
,
N.
,
2016
,
Composites Recycling: Where Are We Now?
,
Composites UK
,
UK
.
17.
Sassa
,
S.
, and
Ishizaka
,
O.
,
2022
, “
Net Buffer Method for Suppressing Internal Erosion and Collapse Behind Seawalls and Quaywalls Through Caisson Joint Wave Reduction
,”
Coastal Eng.
,
172
, p.
104061
.
18.
Sassa
,
S.
, and
Ishizaka
,
O.
,
2021
,
Caisson Joint Wave Reduction Method for Suppressing Internal Erosion and Collapse of Seawalls and Quaywalls
,
Port and Airport Research Institute
,
Japan
.
19.
Lee
,
B.
,
Jung
,
J.
,
Park
,
W.
, and
Yoon
,
J.
,
2020
, “
Wave Force Characteristics and Stability of Detached Breakwaters Consisting of Open Cell Caissons Interlocked via Crushed Stones
,”
Water
,
12
(
10
), p.
2873
.
20.
Trautmann
,
C. H.
, and
Kulhawy
,
F. H.
,
1988
, “
Uplift Load-Displacement Behavior of Spread Foundations
,”
J. Geotech. Geoenviron. Eng.
,
2
(
114
), pp.
168
184
.
21.
Chen
,
S.
,
Guo
,
W.
,
Ren
,
Y.
, and
Chen
,
W.
,
2024
, “
Model Test of L-Shaped Caisson Quay Wall in Sand Foundation With Clay Interlayer
,”
Appl. Ocean Res.
,
150
, p.
104128
.
22.
Franz
,
G
,
1983
,
Concrete Calendar
,
Wilhelm Ernst and Sohn
,
Munich, Germany
.
23.
Ameratunga
,
J.
,
Sivakugan
,
N.
, and
Das
,
B. M.
,
2016
,
Correlations of Soil and Rock Properties in Geotechnical Engineering
,
Springer
,
New York
.
You do not currently have access to this content.