Abstract

This paper presents an oscillating wave surge converter (OWSC)-type attachment, comprising a submerged vertical flap connected to the fore edge of a very large floating structure (VLFS) with hinges and linear power take-off (PTO) systems, for extracting wave energy while reducing hydroelastic responses of VLFS. In terms of reductions in hydroelastic responses of VLFS, the OWSC-type attachment is better than the recently proposed raft wave energy converter (WEC)-type attachment for relatively short waves (T < 7 s) and better than the conventional anti-motion device comprising a submerged vertical flap rigidly connected to the fore edge of VLFS for all wave periods. Importantly, the horizontal wave force acting on the submerged flap for the OWSC-type attachment is smaller than that for the conventional anti-motion device, leading to a more economical mooring system. In terms of wave energy extraction, the OWSC-type attachment is better than the raft WEC-type attachment for intermediate and long waves (T ≥ 7 s). In addition, for maximizing power production, the required flap length for the OWSC-type attachment is much smaller than the required pontoon length for the raft WEC-type attachment (about λ/10 as compared to about λ/3, where λ is the incident wavelength).

References

1.
López
,
I.
,
Andreu
,
J.
,
Ceballos
,
S.
,
Martínez De Alegría
,
I.
, and
Kortabarria
,
I.
,
2013
, “
Review of Wave Energy Technologies and the Necessary Power-Equipment
,”
Renew. Sust. Energ. Rev.
,
27
, pp.
413
434
. 10.1016/j.rser.2013.07.009
2.
Whittaker
,
T.
, and
Folley
,
M.
,
2012
, “
Nearshore Oscillating Wave Surge Converters and the Development of Oyster
,”
Philos. Trans. R. Soc. London, Ser. A
,
370
(
1959
), pp.
345
364
. 10.1098/rsta.2011.0152
3.
Babarit
,
A.
,
Hals
,
J.
,
Muliawan
,
M. J.
,
Kurniawan
,
A.
,
Moan
,
T.
, and
Krokstad
,
J.
,
2012
, “
Numerical Benchmarking Study of a Selection of Wave Energy Converters
,”
Renew. Energy
,
41
, pp.
44
63
. 10.1016/j.renene.2011.10.002
4.
Mustapa
,
M. A.
,
Yaakob
,
O. B.
,
Ahmed
,
Y. M.
,
Rheem
,
C. K.
,
Koh
,
K. K.
, and
Adnan
,
F. A.
,
2017
, “
Wave Energy Device and Breakwater Integration: A Review
,”
Renew. Sust. Energ. Rev.
,
77
, pp.
43
58
. 10.1016/j.rser.2017.03.110
5.
Zhao
,
X. L.
,
Ning
,
D. Z.
,
Zou
,
Q. P.
,
Qiao
,
D. S.
, and
Cai
,
S. Q.
,
2019
, “
Hybrid Floating Breakwater—WEC System: A Review
,”
Ocean Eng.
,
186
,
106126
. 10.1016/j.oceaneng.2019.106126
6.
Zheng
,
S.
,
Zhang
,
Y.
, and
Iglesias
,
G.
,
2019
, “
Coast/Breakwater-Integrated OWC: A Theoretical Model
,”
Mar. Struct.
,
66
, pp.
121
135
. 10.1016/j.marstruc.2019.04.001
7.
Pérez-Collazo
,
C.
,
Greaves
,
D.
, and
Iglesias
,
G.
,
2015
, “
A Review of Combined Wave and Offshore Wind Energy
,”
Renew. Sust. Energ. Rev.
,
42
, pp.
141
153
. 10.1016/j.rser.2014.09.032
8.
Zhang
,
H.
,
Xu
,
D.
,
Zhao
,
H.
,
Xia
,
S.
, and
Wu
,
Y.
,
2018
, “
Energy Extraction of Wave Energy Converters Embedded in a Very Large Modularized Floating Platform
,”
Energy
,
158
, pp.
317
329
. 10.1016/j.energy.2018.06.031
9.
International Renewable Energy Agency (IRENA)
,
Wave Energy: Technology Brief
,
2014
.
10.
Watanabe
,
E.
,
Utsunomiya
,
T.
, and
Wang
,
C. M.
,
2004
, “
Hydroelastic Analysis of Pontoon-Type VLFS: A Literature Survey
,”
Eng. Struct.
,
26
(
2
), pp.
245
256
. 10.1016/j.engstruct.2003.10.001
11.
Suzuki
,
H.
,
2005
, “
Overview of Megafloat: Concept, Design Criteria, Analysis, and Design
,”
Mar. Struct.
,
18
(
2
), pp.
111
132
. 10.1016/j.marstruc.2005.07.006
12.
Wang
,
C. M.
,
Watanabe
,
E.
, and
Utsunomiya
,
T.
,
2008
,
Very Large Floating Structures
,
Taylor and Francis
,
London
.
13.
Lamas-Pardo
,
M.
,
Iglesias
,
G.
, and
Carral
,
L.
,
2015
, “
A Review of Very Large Floating Structures (VLFS) for Coastal and Offshore Uses
,”
Ocean Eng.
,
109
, pp.
677
690
. 10.1016/j.oceaneng.2015.09.012
14.
Wang
,
C. M.
,
Tay
,
Z. Y.
,
Takagi
,
K.
, and
Utsunomiya
,
T.
,
2010
, “
Literature Review of Methods for Mitigating Hydroelastic Response of VLFS Under Wave Action
,”
ASME Appl. Mech. Rev.
,
63
(
3
), pp.
1
18
. 10.1115/1.4001690
15.
Cheng
,
Y.
,
Ji
,
C.
,
Zhai
,
G.
, and
Oleg
,
G.
,
2016
, “
Dual Inclined Perforated Anti-Motion Plates for Mitigating Hydroelastic Response of a VLFS Under Wave Action
,”
Ocean Eng.
,
121
, pp.
572
591
. 10.1016/j.oceaneng.2016.05.044
16.
Nguyen
,
H. P.
,
Dai
,
J.
,
Wang
,
C. M.
,
Ang
,
K. K.
, and
Luong
,
V. H.
,
2018
, “
Reducing Hydroelastic Responses of Pontoon-Type VLFS Using Vertical Elastic Mooring Lines
,”
Mar. Struct.
,
59
, pp.
251
270
. 10.1016/j.marstruc.2018.02.005
17.
Singla
,
S.
,
Martha
,
S. C.
, and
Sahoo
,
T.
,
2018
, “
Mitigation of Structural Responses of a Very Large Floating Structure in the Presence of Vertical Porous Barrier
,”
Ocean Eng.
,
165
, pp.
505
527
. 10.1016/j.oceaneng.2018.07.045
18.
Ohta
,
H.
,
Torii
,
T.
,
Hayashi
,
N.
,
Watanabe
,
T.
,
Utsunomiya
,
E.
,
Sekita
,
K.
, and
Sunahara
,
S.
,
1999
, “
Effect of Attachment of a Horizontal/Vertical Plate on the Wave Response of a VLFS
,”
Proceedings of the 3rd International Workshop on Very Large Floating Structures
,
Hawaii
,
Sept. 22–24
.
19.
Takagi
,
K.
,
Shimada
,
K.
, and
Ikebuchi
,
T.
,
2000
, “
Anti-Motion Device for a Very Large Floating Structure
,”
Mar. Struct.
,
13
(
4–5
), pp.
421
436
. 10.1016/S0951-8339(00)00018-6
20.
Masanobu
,
Y.
,
Kato
,
S.
,
Maeda
,
S.
, and
Namba
,
K.
,
2003
, “
Response of the Mega-Float Equipped With Novel Wave Energy Absorber
,”
Proceedings of the 22nd International Conference on Offshore Mechanics and Arctic Engineering
,
Cancun, Mexico
,
June 8–13
.
21.
Maeda
,
H.
,
Onishi
,
Y.
,
Rheem
,
C.-K.
,
Ikoma
,
T.
,
Washio
,
Y.
,
Osawa
,
H.
, and
Arita
,
M.
,
2000
, “
Flexible Response Reduction on a Very Large Floating Structure due to OWC Wave Power Devices
,”
J. Soc. Nav. Archit. Jpn.
,
2000
(
188
), pp.
279
285
. 10.2534/jjasnaoe1968.2000.188_279
22.
Hong
,
D. C.
, and
Hong
,
S. Y.
,
2007
, “
Hydroelastic Responses and Drift Forces of a Very-Long Floating Structure Equipped With a Pin-Connected Oscillating-Water-Column Breakwater System
,”
Ocean Eng.
,
34
(
5–6
), pp.
696
708
. 10.1016/j.oceaneng.2006.05.004
23.
Ikoma
,
T.
,
Masuda
,
K.
,
Watanabe
,
Y.
,
Eto
,
H.
,
Rheem
,
C.
, and
Kinoshita
,
T.
,
2015
, “
Power Generation Potential of a VLFS Equipped With OWC Type WECs and Damper Effects on Elastic Motion
,”
Proceedings of the 34th International Conference on Ocean, Offshore and Arctic Engineering
,
Newfoundland, Canada
,
May 31–June 5
.
24.
Zheng
,
S.-M.
,
Zhang
,
Y.-H.
,
Zhang
,
Y.-L.
, and
Sheng
,
W.-A.
,
2015
, “
Numerical Study on the Dynamics of a Two-Raft Wave Energy Conversion Device
,”
J. Fluids Struct.
,
58
, pp.
271
290
. 10.1016/j.jfluidstructs.2015.07.008
25.
Tay
,
Z. Y.
,
2017
, “
Energy Generation From Anti-Motion Device of Very Large Floating Structure
,”
Proceedings of the 12th European Wave and Tidal Energy Conference
,
Cork, Ireland
,
Aug. 27–Sept. 1
.
26.
Ren
,
N.
,
Zhang
,
C.
,
Magee
,
A. R.
,
Hellan
,
Ø
,
Dai
,
J.
, and
Ang
,
K. K.
,
2019
, “
Hydrodynamic Analysis of a Modular Multi-Purpose Floating Structure System With Different Outermost Connector Types
,”
Ocean Eng.
,
176
, pp.
158
168
. 10.1016/j.oceaneng.2019.02.052
27.
Zhang
,
X.
,
Zheng
,
S.
,
Lu
,
D.
, and
Tian
,
X.
,
2019
, “
Numerical Investigation of the Dynamic Response and Power Capture Performance of a VLFS With a Wave Energy Conversion Unit
,”
Eng. Struct.
,
195
, pp.
62
83
. 10.1016/j.engstruct.2019.05.077
28.
Sarpkaya
,
T.
, and
Isaacson
,
M.
,
1981
,
Mechanics of Wave Forces on Offshore Structures
,
Van Nostrand Reinhold Co
,
New York
.
29.
Wang
,
C. D.
, and
Wang
,
C. M.
,
2008
, “
Computation of the Stress Resultants of a Floating Mindlin Plate in Response to Linear Wave Forces
,”
J. Fluids Struct.
,
24
(
7
), pp.
1042
1057
. 10.1016/j.jfluidstructs.2008.01.006
30.
Kim
,
K.-T.
,
Lee
,
P.-S.
, and
Park
,
K. C.
,
2013
, “
A Direct Coupling Method for 3D Hydroelastic Analysis of Floating Structures
,”
Int. J. Numer. Methods Eng.
,
96
, pp.
842
866
. 10.1002/nme.4564
31.
Liu
,
G. R.
, and
Quek
,
S.
,
2003
,
The Finite Element Method: A Practical Course
, 2nd ed.,
Butterworth-Heinemann
,
Oxford
.
32.
Babarit
,
A.
,
Hals
,
J.
,
Kurniawan
,
A.
,
Muliawan
,
M.
,
Moan
,
T.
, and
Krokstad
,
J.
,
2011
,
The NumWEC Project: Numerical Estimation of Energy Delivery From a Selection of Wave Energy Converters
, pp.
1
317
. 10.13140/RG.2.1.3807.8885
33.
Faltinsen
,
O. M.
,
1990
,
Sea Loads on Ships and Offshore Structures
,
Cambridge University Press
,
Cambridge, New York
.
34.
Falnes
,
J.
,
2002
,
Ocean Waves and Oscillating Systems
,
Cambridge University Press
,
Cambridge
.
35.
Fu
,
S.
,
Moan
,
T.
,
Chen
,
X.
, and
Cui
,
W.
,
2007
, “
Hydroelastic Analysis of Flexible Floating Interconnected Structures
,”
Ocean Eng.
,
34
(
11–12
), pp.
1516
1531
. 10.1016/j.oceaneng.2007.01.003
36.
Yago
,
K.
, and
Endo
,
H.
,
1996
, “
On the Hydroelastic Response of Box-Shaped Floating Structure With Shallow Draft
,”
J. Soc. Nav. Archit. Jpn.
,
1996
(
180
), pp.
341
352
. 10.2534/jjasnaoe1968.1996.180_341
37.
Yu
,
H.-F.
,
Zhang
,
Y.-L.
, and
Zheng
,
S.-M.
,
2016
, “
Numerical Study on the Performance of a Wave Energy Converter With Three Hinged Bodies
,”
Renew. Energy
,
99
, pp.
1276
1286
. 10.1016/j.renene.2016.08.023
38.
Henry
,
A.
,
2008
, “
The Hydrodynamics of Small Seabed Mounted Bottom Hinged Wave Energy Converters in Shallow Water
,”
Ph.D. thesis
,
Queen’s University Belfast
.
39.
Renzi
,
E.
, and
Dias
,
F.
,
2012
, “
Resonant Behaviour of an Oscillating Wave Energy Converter in a Channel
,”
J. Fluid Mech.
,
701
, pp.
482
510
. 10.1017/jfm.2012.194
40.
Nguyen
,
H. P.
,
Wang
,
C. M.
,
Flocard
,
F.
, and
Pedroso
,
D. M.
,
2019
, “
Extracting Energy While Reducing Hydroelastic Responses of VLFS Using a Modular Raft WEC-Type Attachment
,”
Appl. Ocean Res.
,
84
, pp.
302
316
. 10.1016/j.apor.2018.11.016
41.
Gao
,
R. P.
,
Tay
,
Z. Y.
,
Wang
,
C. M.
, and
Koh
,
C. G.
,
2011
, “
Hydroelastic Response of Very Large Floating Structure With a Flexible Line Connection
,”
Ocean Eng.
,
38
(
17–18
), pp.
1957
1966
. 10.1016/j.oceaneng.2011.09.021
42.
Flocard
,
F.
, and
Finnigan
,
T. D.
,
2010
, “
Laboratory Experiments on the Power Capture of Pitching Vertical Cylinders in Waves
,”
Ocean Eng.
,
37
(
11–12
), pp.
989
997
. 10.1016/j.oceaneng.2010.03.011
43.
Dean
,
R. G.
, and
Dalrymple
,
R. A.
,
1991
,
Water Wave Mechanics for Engineers and Scientists
,
World Scientific Publishing Co
,
Singapore
.
44.
Nguyen
,
H. P.
,
Wang
,
C. M.
, and
Pedroso
,
D. M.
,
2019
, “
Optimization of Modular Raft WEC-Type Attachment to VLFS and Module Connections for Maximum Reduction in Hydroelastic Response and Wave Energy Production
,”
Ocean Eng.
,
172
, pp.
407
421
. 10.1016/j.oceaneng.2018.12.014
45.
Yemm
,
R.
,
Pizer
,
D.
,
Retzler
,
C.
, and
Henderson
,
R.
,
2012
, “
Pelamis: Experience From Concept to Connection
,”
Philos. Trans. R. Soc. London, Ser. A
,
370
(
1959
), pp.
365
380
. 10.1098/rsta.2011.0312
You do not currently have access to this content.