The effect of a rigid circular inclusion on stresses in a cylindrical shell subjected to internal pressure has been studied. The two linear shallow shell equations governing the behavior of a cylindrical shell are converted into a single differential equation involving a curvature parameter and a potential function in nondimensionalized form. The solution in terms of Hankel functions is used to find membrane and bending stressses. Boundary conditions at the inclusion shell junction are expressed in a simple form involving the in-plane strains and change of curvature. Good agreement has been obtained for the limiting case of a flat plate. The shell results are plotted in nondimensional form for ready use.

This content is only available via PDF.
You do not currently have access to this content.