Limit loads are determined in this paper by invoking the concept of equivalence of “static indeterminacy” that relates a multidimensional component configuration (with cracks) to a “reference two-bar structure.” Simple scaling relationships are developed that enable rapid determination of limit loads. The method is applied to different crack configurations, and the limit loads are compared with corresponding results obtained from inelastic finite element analysis.
Issue Section:
Design and Analysis
1.
R6
, 2001, “Assessment of Integrity of Structures Containing Defects
,” Revision 4, British Energy.2.
API
, 2000, “Recommended Practice for Fitness-for-Service
,” API 579, American Petroleum Institute, Washington, DC.3.
SINTAP
, 1999, “Structural Integrity Assessment Procedures for European Industry
,” Final Procedure, British Steel Report, Brussels: Brite Euram Programme, Project No. BE95-1426.4.
BSI
, 1999, “Guide on Methods for Assessing the Acceptability of Flaws in Structures
,” British Institute, BS 7910.5.
Commissariat a 1’Energy Atomique (CEA)
, 1999, “A16: Guide for Defect Assessment and Leak Before Break Analysis
,” Draft.6.
Seshadri
, R.
, 1991, “The Generalized Local Stress Strain (GLOSS) Analysis— Theory and Applications
,” ASME J. Pressure Vessel Technol.
0094-9930, 113
, pp. 219
–227
.7.
Adibi-Asl
, R.
, Fanous
, I. F. Z.
, and Seshadri
, R.
, 2006, “Elastic Modulus Adjustment Procedures-Improved Convergence Schemes
,” Int. J. Pressure Vessels Piping
0308-0161, 83
, pp. 154
–160
.8.
Ponter
, A. R. S.
, Fuschi
, P.
, and Engelhardt
, M.
, 2000, “Limit Analysis for a General Class of Yield Conditions
,” Eur. J. Mech. A/Solids
0997-7538, 19
, pp. 401
–421
.9.
Ponter
, A. R. S.
, and Engelhardt
, M.
, 2000 “Shakedown Limit for a General Yield Condition
,” Eur. J. Mech. A/Solids
0997-7538, 19
, pp. 423
–445
.10.
Ponter
, A. R. S.
, and Chen
, H.
, 2001, “A Programming Method for Limit Load and Shakedown Analysis of Structures
,” Proceedings of the ASME Pressure Vessels and Piping Conference
, Atlanta, GA
, ASME
, New York
, ASME PVP-Vol. 430
, pp. 155
–160
.11.
Seshadri
, R.
, and Fernando
, C. P. D.
, 1992, “Limit Loads of Mechanical Components and Structures Using the GLOSS R-Node Method
,” ASME J. Pressure Vessel Technol.
0094-9930, 114
, pp. 201
–208
.12.
Marriott
, D. L.
, 1988, “Evaluation of Deformation or Load Control of Stresses Under Inelastic Conditions Using Elastic Finite Element Stress Analysis
,” Proceedings of the ASME Pressure Vessels and Piping Conference
, Pittsburgh, PA
, ASME
, New York
, ASME PVP-Vol. 136
, pp. 3
–9
.13.
Mackenzie
, D.
, and Boyle
, J. T.
, 1992, “A Method of Estimating Limit Loads Using Elastic Analysis, I: Simple Examples
,” Int. J. Pressure Vessels Piping
0308-0161, 53
, pp. 77
–85
.14.
Seshadri
, R.
, and Mangalaramanan
, S. P.
, 1997, “Lower Bound Limit Load Using Variational Concepts: The mα-Method
,” Int. J. Pressure Vessels Piping
0308-0161, 71
, pp. 93
–106
.15.
Seshadri
, R.
, and Adibi-Asl
, R.
, 2007, “Simplified Limit Load Determination Using the Reference Two-Bar Structure
,” ASME J. Pressure Vessel Technol.
0094-9930, 129
, pp. 280
–286
.16.
Calladine
, C. R.
, 1969, Engineering Plasticity
, Pergamon
, Oxford, UK
.17.
Lubliner
, J.
, 1990, Plasticity Theory
, Macmillan
, London, UK
.18.
Mura
, T.
, Rimawi
, W. H.
, and Lee
, S. L.
, 1965, “Extended Theorems of Limit Analysis
,” Q. Appl. Math.
, 23
, pp. 171
–179
. 0033-569X19.
Reinhardt
, W. D.
, and Seshadri
, R.
, 2003, “Limit Load Bounds for the mα Multipliers
,” ASME J. Pressure Vessel Technol.
0094-9930, 125
, pp. 11
–18
.Copyright © 2009
by American Society of Mechanical Engineers
You do not currently have access to this content.