Several processes in nature as well as many industrial applications involve static or dynamic granular materials. Granulates can adopt solid-, liquid-, or gaslike states and thereby reveal intriguing physical phenomena not observable in its versatility for any other form of matter. The frequent occurrence of phase transitions and the related characteristics thereby strongly affect their processing quality and economics. This situation demands for prediction methods for the behavior of granulates. In this context simulations provide a feasible alternative to experimental investigations. Several different simulation approaches are applicable to granular materials. The time-driven discrete element method turns out to be not only the most complex but also the most general simulation approach. Discrete element simulations have been used in a wide variety of scientific fields for more than 30 years. With the tremendous increase in available computer power, especially in the past years, the method is more and more developing to the state of the art simulation technique for granular materials not only in science but also in industrial applications. Several commercial software packages utilizing the time-driven discrete element method have emerged and are becoming more and more popular within the engineering community. Despite the long time of usage of the time-driven discrete element method, model advances derived and theoretical and experimental studies performed in the different branches of application lack harmonization. They thereby provide potential for improvements. Therefore, the scope of this paper is a review of methods and models for contact forces based on theoretical considerations and experimental data from literature. Particles considered are of spherical shape. Through model advances it is intended to contribute to a general enhancement of simulation techniques, which help improve products and the design of the related equipment.

1.
Kruggel-Emden
,
H.
,
Rickelt
,
S.
,
Wirtz
,
S.
, and
Scherer
,
V.
, 2008, “
A Study on the Validity of the Multi-Sphere Discrete Element Method
,”
Powder Technol.
,
188
(
2
), pp.
153
165
. 0032-5910
2.
Alder
,
B. J.
, and
Wainwright
,
T. E.
, 1957, “
Phase Transition for a Hard Sphere System
,”
J. Chem. Phys.
0021-9606,
27
(
5
), pp.
1208
1209
.
3.
Allen
,
M. P.
, and
Tildesley
,
D. J.
, 1987,
Computer Simulation of Liquids
,
Oxford University Press
,
Oxford
.
4.
Cundall
,
P. A.
, and
Strack
,
O. D. L.
, 1979, “
A Discrete Numerical Model for Granular Assemblies
,”
Geotechnique
,
29
, pp.
47
65
. 0016-8505
5.
Haff
,
P. K.
, and
Werner
,
B. T.
, 1986, “
Computer-Simulation of the Mechanical Sorting of Grains
,”
Powder Technol.
0032-5910,
48
(
3
), pp.
239
245
.
6.
Walton
,
O. R.
, and
Braun
,
R. L.
, 1986, “
Viscosity, Granular Temperature and Stress Calculations for Shearing Assemblies of Inelastic, Frictional Disks
,”
J. Rheol.
0148-6055,
30
, pp.
949
980
.
7.
Luding
,
S.
, 2004, “
Molecular Dynamics Simulations of Granular Materials
,”
The Physics of Granular Media
,
H.
Hinrichsen
and
D.
Wolf
, eds.,
Wiley-VCH
,
Weinheim
.
8.
Yang
,
S. C.
, and
Hsiau
,
S. S.
, 2001, “
The Simulation and Experimental Study of Granular Materials Discharged From a Silo With the Placement of Inserts
,”
Powder Technol.
,
120
(
3
), pp.
244
255
. 0032-5910
9.
Goda
,
T. J.
, and
Ebert
,
F.
, 2005, “
Three-Dimensional Discrete Element Simulations in Hoppers and Silos
,”
Powder Technol.
0032-5910,
158
(
1–3
), pp.
58
68
.
10.
Langston
,
P. A.
,
Tüzün
,
U.
, and
Heyes
,
D. M.
, 1994, “
Continuous Potential Discrete Particle Simulations of Stress and Velocity Fields in Hoppers: Transition From Fluid to Granular Flow
,”
Chem. Eng. Sci.
0009-2509,
49
(
8
), pp.
1259
1275
.
11.
Kruggel-Emden
,
H.
,
Simsek
,
E.
,
Wirtz
,
S.
, and
Scherer
,
V.
, 2006, “
Modeling of Granular Flow and Combined Heat Transfer in Hoppers by the Discrete Element Method (DEM)
,”
ASME J. Pressure Vessel Technol.
0094-9930,
128
(
3
), pp.
439
444
.
12.
Peters
,
B.
,
Dziugys
,
A.
,
Hunsinger
,
H.
, and
Krebs
,
L.
, 2005, “
An Approach to Qualify the Intensity of Mixing on a Forward Acting Grate
,”
Chem. Eng. Sci.
,
60
(
6
), pp.
1649
1659
. 0009-2509
13.
Kruggel-Emden
,
H.
,
Simsek
,
E.
,
Wirtz
,
S.
, and
Scherer
,
V.
, 2007, “
A Comparative Numerical Study of Particle Mixing on Different Grate Designs Through The Discrete Element Method
,”
ASME J. Pressure Vessel Technol.
0094-9930,
129
(
4
), pp.
593
600
.
14.
Finnie
,
G. J.
,
Kruyt
,
N. P.
,
Ye
,
M.
,
Zeilstra
,
C.
, and
Kuipers
,
J. A. M.
, 2005, “
Longitudinal and Transverse Mixing in Rotary Kilns: A Discrete Element Method Approach
,”
Chem. Eng. Sci.
,
60
(
15
), pp.
4083
4091
. 0009-2509
15.
Van Puyvelde
,
D. R.
, 2006, “
Comparison of Discrete Elemental Modelling to Experimental Data Regarding Mixing of Solids in the Transverse Direction of a Rotating Kiln
,”
Chem. Eng. Sci.
,
61
(
13
), pp.
4462
4465
. 0009-2509
16.
Bertrand
,
F.
,
Leclaire
,
L. A.
, and
Levecque
,
G.
, 2005, “
DEM-Based Models for the Mixing of Granular Materials
,”
Chem. Eng. Sci.
,
60
(
8–9
), pp.
2517
2531
. 0009-2509
17.
Tsuji
,
Y.
,
Kawaguchi
,
T.
, and
Tanaka
,
T.
, 1993, “
Discrete Particle Simulation of Two-Dimensional Fluidized Bed
,”
Powder Technol.
0032-5910,
77
, pp.
79
87
.
18.
Zhong
,
W. Q.
,
Xiong
,
Y. Q.
,
Yuan
,
Z. L.
, and
Zhang
,
M. Y.
, 2006, “
DEM Simulation of Gas-Solid Flow Behaviors in Spout-Fluid Bed
,”
Chem. Eng. Sci.
,
61
(
5
), pp.
1571
1584
. 0009-2509
19.
Simsek
,
E.
,
Grochowski
,
R.
,
Wirtz
,
S.
,
Scherer
,
V.
,
Kruggel-Emden
,
H.
, and
Walzel
,
P.
, 2008, “
An Experimental and Numerical Study of Transversal Dispersion of Granular Material on a Vibrating Conveyor
,”
Part. Sci. Technol.
,
26
(
2
), pp.
177
196
. 0272-6351
20.
Tsuji
,
Y.
,
Tanaka
,
T.
, and
Ishida
,
T.
, 1992, “
Lagrangian Numerical Simulation of Plug Flow of Cohesionless Particles in a Horizontal Pipe
,”
Powder Technol.
0032-5910,
71
, pp.
239
250
.
21.
Götz
,
S.
, “
Gekoppelte CFD/DEM-Simulation Blasenbildender Wirbelschichten
,” Ph.D. thesis, Universitaet Dortmund, Dortmund, Germany, 2006.
22.
Moysey
,
P. A.
, and
Thompson
,
M. R.
, 2005, “
Modelling the Solids Inflow and Solids Conveying of Single-Screw Extruders Using the Discrete Element Method
,”
Powder Technol.
,
153
(
2
), pp.
95
107
. 0032-5910
23.
Kruggel-Emden
,
H.
,
Sturm
,
M.
,
Wirtz
,
S.
, and
Scherer
,
V.
, 2008, “
Selection of an Appropriate Time Integration Scheme for the Discrete Element Method (DEM)
,”
Comput. Chem. Eng.
,
32
(
10
), pp.
2263
2279
. 0098-1354
24.
Johnson
,
K. L.
, 1989,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
25.
Munjiza
,
A.
, 2004,
The Combined Finite-Discrete Element Method
,
Wiley
,
New York
.
26.
Goldsmith
,
W.
, 1960,
Impact
,
Edward Arnold Ltd.
,
London
.
27.
Bridges
,
F. G.
,
Hatzes
,
A.
, and
Lin
,
D. N. C.
, 1984, “
Structure, Stability and Evolutions of Saturn’s Rings
,”
Nature (London)
0028-0836,
309
, pp.
333
335
.
28.
Stevens
,
A. B.
, and
Hrenya
,
C. M.
, 2005, “
Comparison of Soft-Sphere Models to Measurements of Collision Properties During Normal Impacts
,”
Powder Technol.
0032-5910,
154
(
2–3
), pp.
99
109
.
29.
Gorham
,
D. A.
, and
Kharaz
,
A. H.
, 2000, “
The Measurement of Particle Rebound Characteristics
,”
Powder Technol.
0032-5910,
112
(
3
), pp.
193
202
.
30.
Van Zeebroeck
,
M.
,
Tijskens
,
E.
,
Van Liedekerke
,
P.
,
Deli
,
V.
,
De Baerdemaeker
,
J.
, and
Ramon
,
H.
, 2003, “
Determination of the Dynamical Behaviour of Biological Materials During Impact Using a Pendulum Device
,”
J. Sound Vib.
,
266
, pp.
465
480
. 0022-460X
31.
Zhang
,
D.
, and
Whiten
,
W. J.
, 1996, “
The Calculation of Contact Forces Between Particles Using Spring and Damping Models
,”
Powder Technol.
0032-5910,
88
, pp.
59
64
.
32.
Dintwa
,
E.
,
Van Zeebroeck
,
M.
,
Tijskens
,
E.
, and
Ramon
,
H.
, 2005, “
Determination of a Tangential Contact Force Model for Viscoelastic Spheroids (Fruits) Using a Rheometer Device
,”
Biosyst. Eng.
,
91
(
3
), pp.
321
327
. 1537-5110
33.
Foerster
,
S. F.
,
Louge
,
M. Y.
,
Chang
,
A. H.
, and
Allia
,
K.
, 1994, “
Measurements of the Collision Properties of Small Spheres
,”
Phys. Fluids
1070-6631,
6
(
3
), pp.
1108
1115
.
34.
Lorenz
,
A.
,
Tuozzolo
,
C.
, and
Louge
,
M. Y.
, 1997, “
Measurements of Impact Properties of Small, Nearly Spherical Particles
,”
Exp. Mech.
0014-4851,
37
(
3
), pp.
292
298
.
35.
Kharaz
,
A. H.
,
Gorham
,
D. A.
, and
Salman
,
A. D.
, 2001, “
An Experimental Study of the Elastic Rebound of Spheres
,”
Powder Technol.
0032-5910,
120
(
3
), pp.
281
291
.
36.
Dong
,
H.
, and
Moys
,
M. H.
, 2003, “
Measurement of Impact Behaviour Between Balls and Walls in Grinding Mills
,”
Minerals Eng.
,
16
(
6
), pp.
543
550
. 0892-6875
37.
Dong
,
H.
, and
Moys
,
M. H.
, 2006, “
Experimental Study of Oblique Impacts With Initial Spin
,”
Powder Technol.
,
161
(
1
), pp.
22
31
. 0032-5910
38.
Chandramohan
,
R.
, and
Powell
,
M. S.
, 2005, “
Measurement of Particle Interaction Properties for Incorporation in the Discrete Element Method Simulation
,”
Minerals Eng.
,
18
(
12
), pp.
1142
1151
. 0892-6875
39.
Shäfer
,
J.
,
Dippel
,
S.
, and
Wolf
,
D. E.
, 1996, “
Force Schemes in Simulations of Granular Materials
,”
J. Phys. I
1155-4304,
6
(
1
), pp.
5
20
.
40.
Kuwabara
,
G.
, and
Kono
,
K.
, 1987, “
Restitution Coefficient in Collision Between Two Spheres
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
26
, pp.
1230
1233
.
41.
Brilliantov
,
N. V.
,
Spahn
,
F.
,
Hertzsch
,
J.
, and
Poeschel
,
T.
, 1996, “
Model for Collisions in Granular Gases
,”
Phys. Rev. E
1063-651X,
53
(
5
), pp.
5382
5392
.
42.
Aoki
,
K. M.
, and
Akiyama
,
T.
, 1995, “
Simulation Studies of Pressure and Density Wave Propagations in Vertically Vibrated Beds of Granules
,”
Phys. Rev. E
1063-651X,
52
(
3
), pp.
3288
3291
.
43.
Lee
,
J.
, and
Herrmann
,
H. J.
, “
Angle of Repose and Angle of Marginal Stability—Molecular-Dynamics of Granular Particles
,”
J. Phys. A
0305-4470,
26
(
2
), pp.
373
383
(1993).
44.
Thornton
,
C.
, 1997, “
Coefficient of Restitution for Collinear Collisions of Elastic Perfectly Plastic Spheres
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
64
(
2
), pp.
383
386
.
45.
Tomas
,
J.
, 2003, “
Mechanics of Nanoparticle Adhesion—A Continuum Approach
,”
Particles on Surfaces 8: Detection Adhesion and Removal
,
K. L.
Mittal
, ed.,
VSP
,
Utrecht
, pp.
183
229
.
46.
Sadd
,
M. H.
,
Tai
,
Q. M.
, and
Shukla
,
A.
, 1993, “
Contact Law Effects on Wave-Propagation in Particulate Materials Using Distinct Element Modeling
,”
Int. J. Non-Linear Mech.
0020-7462,
28
(
2
), pp.
251
265
.
47.
Vu-Quoc
,
L.
, and
Zhang
,
X.
, 1999, “
An Elastoplastic Force-Displacement Model in the Normal Direction: Displacement-Driven Version
,”
Proc. R. Soc. London, Ser. A
0950-1207,
455
, pp.
4013
4044
.
48.
Schwager
,
T.
, and
Pöschel
,
T.
, 1997, “
Contact of Viscoelastic Spheres
,”
Friction, Arching, Contact Dynamics
,
D. E.
Wolf
and
P.
Grassberger
, eds.,
World Scientific
,
Singapore
, pp.
293
299
.
49.
Kruggel-Emden
,
H.
,
Simsek
,
E.
,
Rickelt
,
S.
,
Wirtz
,
S.
, and
Scherer
,
V.
, 2007, “
Review and Extension of Normal Force Models for the Discrete Element Method
,”
Powder Technol.
0032-5910,
171
(
3
), pp.
157
173
.
50.
Di Renzo
,
A.
, and
Di Maio
,
F. P.
, 2004, “
Comparison of Contact-Force Models for the Simulation of Collisions in DEM-Based Granular Flow Codes
,”
Chem. Eng. Sci.
0009-2509,
59
, pp.
525
541
.
51.
Kruggel-Emden
,
H.
,
Wirtz
,
S.
, and
Scherer
,
V.
, 2008, “
A Study on Tangential Force Laws Applicable to the Discrete Element Method (DEM) for Materials With Viscoelastic or Plastic Behavior
,”
Chem. Eng. Sci.
,
63
(
6
), pp.
1523
1541
. 0009-2509
52.
Kruggel-Emden
,
H.
,
Wirtz
,
S.
, and
Scherer
,
V.
, 2007, “
An Analytical Solution of Different Configurations of the Linear Viscoelastic Normal and Frictional-Elastic Tangential Contact Model
,”
Chem. Eng. Sci.
,
62
(
23
), pp.
6914
6926
. 0009-2509
53.
Verlet
,
L.
, 1967, “
Computer “Experiments” on Classical Fluids, I. Thermodynamical Properties of Lennard-Jones Molecules
,”
Phys. Rev.
,
159
, pp.
98
103
. 0031-899X
54.
Akiyama
,
T.
,
Aoki
,
K. M.
,
Iguchi
,
T.
, and
Nishimoto
,
K.
, 1996, “
Fractal Properties of Vertically Vibrated Beds of Granules
,”
Chem. Eng. Sci.
0009-2509,
51
(
13
), pp.
3551
3553
.
55.
Baxter
,
J.
,
Tüzün
,
U.
,
Burnell
,
J.
, and
Heyes
,
D. M.
, 1997, “
Granular Dynamics Simulation of Two-Dimensional Heap Formation
,”
Phys. Rev. E
1063-651X,
55
(
3
), pp.
3546
3554
.
56.
Langston
,
P. A.
,
Tüzün
,
U.
, and
Heyes
,
D. M.
, 1995, “
Discrete Element Simulation of Granular Flow in 2D and 3D Hoppers: Dependence of Discharge Rate and Wall Stress on Particle Interactions
,”
Chem. Eng. Sci.
0009-2509,
50
(
6
), pp.
967
987
.
57.
Hertz
,
H.
, 1882, “
Über die Berührung Fester Elastischer Körper
,”
J. Reine Angew. Math.
,
92
, pp.
156
171
. 1063-651X
58.
Tabor
,
D.
, 2001,
The Hardness of Metals
,
Oxford University Press
,
Oxford
.
59.
Brendel
,
L.
, and
Dippel
,
S.
, 1998, “
Lasting Contacts in Molecular Dynamics Simulations
,”
Physics of Dry Granular Media
,
H.
Herrmann
,
J. P.
Hovi
, and
S.
Luding
, eds.,
Kluwer
,
Dordrecht
.
60.
Di Maio
,
F. P.
, and
Di Renzo
,
A.
, 2004, “
Analytical Solution for the Problem of Frictional-Elastic Collisions of Spherical Particles Using The Linear Model
,”
Chem. Eng. Sci.
0009-2509,
59
(
16
), pp.
3461
3475
.
61.
Di Renzo
,
A.
, and
Di Maio
,
F. P.
, 2005, “
An Improved Integral Non-Linear Model for the Contact of Particles in Distinct Element Simulations
,”
Chem. Eng. Sci.
,
60
(
5
), pp.
1303
1312
. 0009-2509
62.
David
,
C. T.
,
Garcia-Rojo
,
R.
,
Herrmann
,
H. J.
, and
Luding
,
S.
, 2007, “
Powder Flow Testing With 2D and 3D Biaxial and Triaxial Simulations
,”
Part. Part. Syst. Charact.
0934-0866,
24
(
1
), pp.
29
33
.
63.
Mindlin
,
R. D.
, and
Deresiewicz
,
H.
, 1953, “
Elastic Spheres in Contact Under Varying Oblique Forces
,”
Trans. ASME, J. Appl. Mech.
,
20
, pp.
327
344
. 0021-8936
64.
Maw
,
N.
,
Barber
,
J. R.
, and
Fawcett
,
J. N.
, 1976, “
Oblique Impact of Elastic Spheres
,”
Wear
0043-1648,
38
, pp.
101
114
.
65.
Vu-Quoc
,
L.
, and
Zhang
,
X.
, 1999, “
An Accurate and Efficient Tangential Force–Displacement Model for Elastic Frictional Contact in Particle-Flow Simulations
,”
Mech. Mater.
0167-6636,
31
, pp.
235
269
.
66.
Li
,
J.
,
Langston
,
P. A.
,
Webb
,
C.
, and
Dyakowski
,
T.
, 2004, “
Flow of Sphero-Disc Particles in Rectangular Hoppers—A DEM and Experimental Comparison in 3D
,”
Chem. Eng. Sci.
,
59
(
24
), pp.
5917
5929
. 0009-2509
You do not currently have access to this content.