The relation between the total strain amplitude and the fatigue life measured in cycles is usually given as strain-life curves based on the former proposals of Basquin, for the elastic strain-life, and Coffin–Manson, for the plastic strain-life. In this paper, a novel Weibull regression model, based on an existing well established Weibull model for the statistical assessment of stress-life fatigue data, is proposed for the probabilistic definition of the strain-life field. This approach arises from sound statistical and physical assumptions and not from an empirical proposal insufficiently supported. It provides an analytical probabilistic definition of the whole strain-life field as quantile curves, both in the low-cycle and high-cycle fatigue regions. The proposed model deals directly with the total strain, without the need of separating its elastic and plastic strain components, permit dealing with run-outs, and can be applied for probabilistic lifetime prediction using damage accumulation. The parameters of the model can be estimated using different well established methods proposed in the fatigue literature, in particular, the maximum likelihood and the two-stage methods. In this work, the proposed model is applied to analyze fatigue data, available for a pressure vessel material—the P355NL1 steel—consisting of constant amplitude, block, and spectrum loading, applied to smooth specimens, previously obtained and published by authors. A new scheme to deal with variable amplitude loading in the background of the proposed regression strain-life Weibull model is described. The possibility to identify the model constants using both constant amplitude and two-block loading data is discussed. It is demonstrated that the proposed probabilistic model is able to correlate the constant amplitude strain-life data. Furthermore, it can be used to correlate the variable amplitude fatigue data if the model constants are derived from two-block loading data. The proposed probabilistic regression model is suitable for reliability analysis of notched details in the framework of the local approaches.

1.
Dowling
,
N.
, and
Thangjitham
,
S.
, 2001, “
An Overview and Discussion of Basic Methodology for Fatigue
,”
Fatigue and Fracture Mechanics
, ASTM STP 1389, Vol.
31
, pp.
3
36
.
2.
Lee
,
Y. L.
,
Pan
,
J.
,
Hathaway
,
R. B.
, and
Barkey
,
M. E.
, 2005,
Fatigue Testing and Analysis
,
Elsevier
,
Burlington, VT
.
3.
Williams
,
C. R.
,
Lee
,
Y. L.
, and
Rilly
,
J. T.
, 2003, “
A Practical Method for Statistical Analysis of Strain-Life Fatigue Data
,”
Int. J. Fatigue
0142-1123,
25
, pp.
427
436
.
4.
Basquin
,
O.
, 1910, “
The Exponential Law of Endurance Tests
,”
American Society Test Materials Proceedings
,
ASTM
,
Philadelphia, PA
, Vol.
10
, pp.
625
630
.
5.
Coffin
,
L.
, 1954, “
A Study of the Effect of Cyclic Thermal Stresses on a Ductile Materials
,”
Trans. ASME
0097-6822,
76
, pp.
931
950
.
6.
Manson
,
S.
, 1965, “
Fatigue: A Complex Subject-Some Simple Approximation
,”
Exp. Mech.
0014-4851,
5
, pp.
193
226
.
7.
Morrow
,
J. D.
, 1965, “
Cyclic Plastic Strain Energy and Fatigue of Metals
,”
Internal Friction, Damping and Cyclic Plasticity
,
ASTM
,
Philadelphia, PA
, pp.
45
86
.
8.
Spindel
,
J. E.
, and
Haibach
,
E.
, 1981, “
Some Considerations in the Statistical Determination of the Shape of S-N Curves
,”
Statistical Analysis of Fatigue Data
(
ASTM Special Technical Publication
No.
744
),
R. E.
Little
and
J. C.
Ekvall
, eds.,
ASTM
,
Philadelphia, PA
, pp.
89
113
.
9.
Pascual
,
F. G.
, and
Meeker
,
W. Q.
, 1999, “
Estimating Fatigue Curves With the Random Fatigue-Limit Model
,”
Technometrics
0040-1706,
41
, pp.
277
302
.
10.
Kohout
,
J.
, 1999, “
A New Function Describing Fatigue Crack Growth Curves
,”
Int. J. Fatigue
0142-1123,
21
, pp.
813
821
.
11.
Kohout
,
J.
, and
Vechet
,
S.
, 2001, “
A New Function for Fatigue Curves Characterization and Its Multiple Merits
,”
Int. J. Fatigue
0142-1123,
23
, pp.
175
183
.
12.
Buckingham
,
E.
, 1914, “
On Physically Similar Systems: Illustrations of the Use of Dimensional Equations
,”
Phys. Rev.
0096-8250,
4
, pp.
345
376
.
13.
Buckingham
,
E.
, 1915, “
The Principle of Similitude
,”
Nature (London)
0028-0836,
96
, pp.
396
397
.
14.
Buckingham
,
E.
, 1915, “
Model Experiments and the Form of Empirical Equations
,”
Trans. ASME
0097-6822,
37
, pp.
263
396
.
15.
Galambos
,
J.
, 1987,
The Asymptotic Theory of Extreme Order Statistics
,
Robert E. Krieger
,
Malabar, FL
.
16.
Castillo
,
E.
, 1988,
Extreme Value Theory in Engineering
,
Academic
,
New York
.
17.
Castillo
,
E.
, and
Galambos
,
J.
, 1987, “
Lifetime Regression Models Based on a Functional Equation of Physical Nature
,”
J. Appl. Probab.
0021-9002,
24
, pp.
160
169
.
18.
Castillo
,
E.
,
Fernández-Canteli
,
A.
,
Esslinger
,
V.
, and
Thürlimann
,
B.
, 1985, “
Statistical Model for Fatigue Analysis of Wires, Strands and Cables
,”
International Association for Bridge and Structural Engineering Proceedings
, Zurich,
International Association for Bridge and Structural Engineering
, pp.
82
85
.
19.
Castillo
,
E.
, and
Hadi
,
A. S.
, 1995, “
Modeling Lifetime Data With Application to Fatigue Models
,”
J. Am. Stat. Assoc.
0162-1459,
90
(
431
), pp.
1041
1054
.
20.
Castillo
,
E.
, and
Fernández-Canteli
,
A.
, 2001, “
A General Regression Model for Lifetime Evaluation and Prediction
,”
Int. J. Fract.
0376-9429,
107
, pp.
117
137
.
21.
Castillo
,
E.
, and
Fernández-Canteli
,
A.
, 2006, “
A Parametric Lifetime Model for the Prediction of High-Cycle Fatigue Based on Stress Level and Amplitude
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
29
, pp.
1031
1038
.
22.
Castillo
,
E.
, and
Hadi
,
A. S.
, 1994, “
Parameter and Quantile Estimation for the Generalized Extreme-Value Distribution
,”
Environmetrics
1180-4009,
5
, pp.
417
432
.
23.
Jenkinson
,
A. F.
, 1969, “
Statistics of Extremes
,” Estimation of Maximum Flood, Technical Note 98, pp.
183
227
, World Meteorological Organization, Geneva.
24.
Prescott
,
P.
, and
Walden
,
A. T.
, 1983, “
Maximum Likelihood Estimation of the Parameters of the Three-Parameter Generalized Extreme-Value Distribution
,”
J. Stat. Comput. Simul.
0094-9655,
16
, pp.
241
250
.
25.
Smith
,
R. L.
, 1985, “
Maximum Likelihood Estimation in a Class of Nonregular Cases
,”
Biometrika
0006-3444,
72
, pp.
67
90
.
26.
Hosking
,
J. R. M.
,
Wallis
,
J. R.
, and
Wood
,
E. F.
, 1985, “
Estimation of the Generalized Pareto Distribution by the Method of Probability-Weighted Moments
,”
Technometrics
0040-1706,
27
, pp.
251
261
.
27.
Greenwood
,
J. A.
,
Landwehr
,
J. M.
,
Matalas
,
N. C.
, and
Wallis
,
J. R.
, 1979, “
Probability Weighted Moments: Definition and Relation to Parameters of Several Distributions Expressible in Inverse Form
,”
Water Resour. Res.
0043-1397,
15
, pp.
1049
1054
.
28.
Efron
,
B.
, 1979, “
Bootstrap Methods: Another Look at the Jacknofe
,”
Ann. Stat.
0090-5364,
7
, pp.
1
26
.
29.
Diaconis
,
P.
, and
Efron
,
B.
, 1983, “
Computer Intensive Methods in Statistics
,”
Sci. Am.
0036-8733,
248
, pp.
116
130
.
30.
Efron
,
B.
, and
Tibshirami
,
R. J.
, 1993,
An Introduction to the Bootstrap
,
Chapman and Hall
,
London
/
CRC
,
Boca Raton, FL
.
31.
Davison
,
A. C.
, and
Hinkley
,
D. V.
, 1997,
Bootstrap Methods and Their Application
(
Cambridge Series in Statistical and Probabilistic Mathematics
),
Cambridge University Press
.
32.
Chernick
,
M. R.
, 1999,
Bootstrap Methods
(
Wiley Series in Probability and Statistics
),
Wiley
,
New York
.
33.
Castillo
,
E.
,
Fernández-Canteli
,
A.
,
Hadi
,
A. S.
, and
López-Aenlle
,
M.
, 2007, “
A Fatigue Model With Local Sensitivity Analysis
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
30
, pp.
149
168
.
34.
Pereira
,
H. F. G. S.
,
De Jesus
,
A. M. P.
,
Fernandes
,
A. A.
, and
Ribeiro
,
A. S.
, 2009, “
Cyclic and Fatigue Behavior of the P355NL1 Steel Under Block Loading
,”
ASME J. Pressure Vessel Technol.
0094-9930,
131
(
2
), p.
021210
.
35.
Pereira
,
H. F. S. G.
,
de Jesus
,
A. M. P.
,
Fernandes
,
A. A.
, and
Ribeiro
,
A. S.
, 2008, “
Analysis of Fatigue Damage Under Block Loading in a Low Carbon Steel
,”
Strain
,
44
, pp.
429
439
.
36.
De Jesus
,
A. M. P.
,
Ribeiro
,
A. S.
, and
Fernandes
,
A. A.
, 2006, “
Low Cycle Fatigue and Cyclic Elastoplastic Behaviour of the P355NL1 steel
,”
ASME J. Pressure Vessel Technol.
0094-9930,
128
(
3
), pp.
298
304
.
You do not currently have access to this content.