In this paper, the classic coupled thermoelasticity model of hollow and solid cylinders under radial-symmetric loading condition (r,t) is considered. A full analytical method is used, and an exact unique solution of the classic coupled equations is presented. The thermal and mechanical boundary conditions, the body force, and the heat source are considered in the most general forms, where no limiting assumption is used.

1.
2007, ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, ASME, New York.
2.
Hetnarski
,
R. B.
, 1964, “
Solution of the Coupled Problem of Thermoelasticity in the Form of Series of Functions
,”
Arch. Mech. Stosow.
0004-0800,
16
, pp.
919
941
.
3.
Hetnarski
,
R. B.
, and
Ignaczak
,
J.
, 1993, “
Generalized Thermoelasticity: Closed-Form Solutions
,”
J. Therm. Stresses
0149-5739,
16
, pp.
473
498
.
4.
Hetnarski
,
R. B.
, and
Ignaczak
,
J.
, 1994, “
Generalized Thermoelasticity: Response of Semi-Space to a Short Laser Pulse
,”
J. Therm. Stresses
0149-5739,
17
, pp.
377
396
.
5.
Georgiadis
,
H. G.
, and
Lykotrafitis
,
G.
, 2005, “
Rayleigh Waves Generated by a Thermal Source: A Three-Dimensional Transient Thermoelasticity Solution
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
129
138
.
6.
Wagner
,
P.
, 1994, “
Fundamental Matrix of the System of Dynamic Linear Thermoelasticity
,”
J. Therm. Stresses
0149-5739,
17
, pp.
549
565
.
7.
Milne
,
P. C.
,
Morland
,
L. W.
, and
Yeung
,
W.
, 1988, “
Spherical Elastic- Plastic Wave Solutions
,”
J. Mech. Phys. Solids
0022-5096,
36
, pp.
15
28
.
8.
Berezovski
,
A.
,
Berezovski
,
M.
, and
Engelbrecht
,
J.
, 2006, “
Numerical Simulation of Nonlinear Elastic Wave Propagation in Piecewise Homogeneous Media
,”
Mater. Sci. Eng., A
0921-5093,
418
(
1–2
), pp.
364
369
.
9.
Berezovski
,
A.
,
Engelbrecht
,
J.
, and
Maugin
,
G. A.
, 2003, “
Numerical Simulation of Two-Dimensional Wave Propagation in Functionally Graded Materials
,”
Eur. J. Mech. A/Solids
0997-7538,
22
, pp.
257
265
.
10.
Berezovski
,
A.
, and
Maugin
,
G. A.
, 2003, “
Simulation of Wave and Front Propagation in Thermoelastic Materials With Phase Transformation
,”
Comput. Mater. Sci.
0927-0256,
28
, pp.
478
485
.
11.
Berezovski
,
A.
, and
Maugin
,
G. A.
, 2001, “
Simulation of Thermoelastic Wave Propagation by Means of a Composite Wave- Propagation Algorithm
,”
J. Comput. Phys.
0021-9991,
168
, pp.
249
264
.
12.
Engelbrecht
,
J.
,
Berezovski
,
A.
, and
Saluperea
,
A.
, 2007, “
Nonlinear Deformation Waves in Solids and Dispersion
,”
Wave Motion
0165-2125,
44
, pp.
493
500
.
13.
Angel
,
Y. C.
, and
Achenbach
,
J. D.
, 1985, “
Reflection and Transmission of Elastic Waves by a Periodic Array of Cracks: Oblique Incidence
,”
Wave Motion
0165-2125,
7
, pp.
375
397
.
14.
Mendelsohn
,
D. A.
,
Achenbach
,
J. D.
, and
Keer
,
L. M.
, 1980, “
Scattering of Elastic Waves by a Surface-Breaking Crack
,”
Wave Motion
0165-2125,
2
, pp.
277
292
.
15.
Dempsey
,
J. P.
,
Kuo
,
M. K.
, and
Achenbach
,
J. D.
, 1982, “
Mode-III Crack Kinking Under Stress-Wave Loading
,”
Wave Motion
0165-2125,
4
, pp.
181
190
.
16.
Achenbach
,
J. D.
, 1998, “
Explicit Solutions for Carrier Waves Supporting Surface Waves and Plate Waves
,”
Wave Motion
0165-2125,
28
, pp.
89
97
.
17.
Achenbach
,
J. D.
, and
Li
,
Z. L.
, 1986, “
Propagation of Horizontally Polarized Transverse Waves in a Solid With a Periodic Distribution of Cracks
,”
Wave Motion
0165-2125,
8
, pp.
371
379
.
18.
Roberts
,
R.
,
Achenbach
,
J. D.
,
Ko
,
R.
,
Adler
,
L.
,
Jungman
,
A.
, and
Quentin
,
G.
, 1985, “
Reflection of a Beam of Elastic Waves by a Periodic Surface Profile
,”
Wave Motion
0165-2125,
7
, pp.
67
77
.
19.
Brind
,
R. J.
,
Achenbach
,
J. D.
, and
Gubernatis
,
J. E.
, 1984, “
High-Frequency Scattering of Elastic Waves From Cylindrical Cavities
,”
Wave Motion
0165-2125,
6
, pp.
41
60
.
20.
Auld
,
B. A.
, 1990,
Acoustic Fields and Waves in Solids
,
Krieger
,
Malabar, Florida
21.
Achenbach
,
J. D.
, 1973,
Wave Propagation in Elastic Solids
,
North-Holland
,
Amsterdam
.
22.
Bagri
,
A.
, and
Eslami
,
M. R.
, 2008, “
Generalized Coupled Thermoelasticity of Functionally Graded Annular Disk Considering the Lord–Shulman Theory
,”
Compos. Struct.
0263-8223,
83
, pp.
168
179
.
23.
Lee
,
H. L.
, and
Yang
,
Y. C.
, 2001, “
Inverse Problem of Coupled Thermoelasticity for Prediction of Heat Flux and Thermal Stresses in an Annular Cylinder
,”
Int. Commun. Heat Mass Transfer
0735-1933,
28
(
5
), pp.
661
670
.
24.
Yang
,
Y. C.
,
Chen
,
U. C.
, and
Chang
,
W. J.
, 2002, “
An Inverse Problem of Coupled Thermoelasticity in Predicting Heat Flux and Thermal Stress by Strain Measurement
,”
J. Therm. Stresses
0149-5739,
25
, pp.
265
281
.
25.
Eraslan
,
A. N.
, and
Orean
,
Y.
, 2002, “
Computation of Transient Thermal Stresses in Elastic-Plastic Tubes: Effect of Coupling and Temperature-Dependent Physical Properties
,”
J. Therm. Stresses
0149-5739,
25
, pp.
559
572
.
26.
Yang
,
Y. C.
, and
Chu
,
S. S.
, 2001, “
Transient Coupled Thermoelastic Analysis of an Annular Fin
,”
Int. Commun. Heat Mass Transfer
0735-1933,
28
(
8
), pp.
1103
1114
.
27.
Bahtui
,
A.
, and
Eslami
,
M. R.
, 2007, “
Coupled Thermoelasticity of Functionally Graded Cylindrical Shells
,”
Mech. Res. Commun.
0093-6413,
34
, pp.
1
18
.
28.
Bakhshi
,
M.
,
Bagri
,
A.
, and
Eslami
,
M. R.
, 2006, “
Coupled Thermoelasticity of Functionally Graded Disk
,”
Mech. Adv. Mater. Structures
,
13
, pp.
214
225
.
29.
Hosseini-Tehrani
,
P.
, and
Eslami
,
M. R.
, 2000, “
BEM Analysis of Thermal and Mechanical Shock in a Two-Dimensional Finite Domain Considering Coupled Thermoelasticity
,”
Eng. Anal. Boundary Elem.
0955-7997,
24
, pp.
249
257
.
30.
Tanigawa
,
Y.
, and
Takeuti
,
Y.
, 1982, “
Coupled Thermal Stress Problem in a Hollow Sphere Under a Partial Heating
,”
Int. J. Eng. Sci.
0020-7225,
20
(
1
), pp.
41
48
.
31.
Bagri
,
A.
, and
Eslami
,
M. R.
, 2004, “
Generalized Coupled Thermoelasticity of Disks Based on the Lord-Shulman Model
,”
J. Therm. Stresses
0149-5739,
27
, pp.
691
704
.
32.
Bagri
,
A.
,
Taheri
,
H.
,
Eslami
,
M. R.
, and
Fariborz
,
F.
, 2006, “
Generalized Coupled Thermoelasticity of Layer
,”
J. Therm. Stresses
0149-5739,
29
, pp.
359
370
.
33.
Cannarozzi
,
A. A.
, and
Ubertini
,
F.
, 2001, “
Mixed Variational Method for Linear Coupled Thermoelastic Analysis
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
717
739
.
34.
Jabbari
,
M.
,
Dehbani
,
H.
, and
Eslami
,
M. R.
, 2010, “
An Exact Solution for Classic Coupled Thermoelasticity in Spherical Coordinates
,”
ASME J. Pressure Vessel Technol.
0094-9930,
132
(
3
), p.
031201
.
35.
Hetnarski
,
R. B.
, and
Eslami
,
M. R.
, 2009,
Thermal Stresses—Advanced Theory and Applications
,
Springer
,
New York
.
You do not currently have access to this content.