Abstract

A Code Case in the framework of the Nuclear Codes and Standards of Japan Society of Mechanical Engineers (JSME) has been published to incorporate seismic design evaluation methodologies for piping systems by detailed inelastic response analysis and strain-based fatigue criteria as an alternative design rule to the current rule, in order to provide a more rational seismic design evaluation by taking directly the response reduction due to plasticity energy absorption into account. The Code Case provides two strain-based criteria: one is a limit to maximum amplitude of equivalent strain amplitude derived from detailed analysis and the other is a limit to the fatigue usage factor also based on the equivalent strain amplitude. Some discussions are provided on the adequacy of additional damping in the simplified inelastic analysis and the safety margin and reliability of fatigue evaluation by the detailed inelastic response analysis provided in the Code Case.

References

1.
Tagart
,
S. W.
,
Tang
,
Y. K.
,
Guzy
,
D. J.
, and
Ranganath
,
S.
,
1990
, “
Piping Dynamic Reliability and Code Rule Change Recommendations
,”
Nucl. Eng. Des.
,
123
(
2–3
), pp.
373
385
.10.1016/0029-5493(90)90258-Y
2.
Suzuki
,
K.
,
Abe
,
H.
, and
Suzuki
,
K.
,
2003
, “
Seismic Proving Test of Ultimate Piping Strength
,”
ASME
Paper No. PVP2003-2954.10.1115/PVP2003-2954
3.
Namita
,
Y.
,
Suzuki
,
K.
,
ABE
,
H.
,
Ichihashi
,
I.
,
Shiratori
,
M.
,
Tai
,
K.
,
Iwata
,
K.
, and
Nebu
,
A.
,
2003
, “
Seismic Proving Test of Eroded Piping (Status of Eroded Piping Component and System Test)
,”
ASME
Paper No. PVP2003-2097.10.1115/PVP2003-2097
4.
Nakamura
,
I.
,
Otani
,
A.
, and
Shiratori
,
M.
,
2004
, “
Failure Behavior of Piping Systems With Wall Thinning Under Seismic Loading
,”
ASME J. Pressure Vessel Technol.
,
126
(
1
), pp.
85
90
.10.1115/1.1638787
5.
Nakamura
,
I.
,
Otani
,
A.
, and
Shiratori
,
M.
, 2007, “
Comparison of Failure Modes of Piping Systems With Wall Thinning Subjected to In-Plane, Out-of-Plane and Mixed Mode Bending Under Seismic Load—An Experimental Approach
,”
ASME
Paper No. PVP2007-26497.10.1115/PVP2007-26497
6.
Uesaka
,
M.
,
Kojima
,
M.
,
Muroya
,
I.
,
Nomura
,
H.
,
Yamazaki
,
J.
, and
Otani
,
A.
, 2014, “
Investigation on Fatigue Curve Against Cyclic Loads of an Earthquake for Piping Components
,”
ASME
Paper No. PVP2014-28234.10.1115/PVP2014-28234
7.
Arai
,
M.
,
Kojima
,
N.
,
Kabaya
,
T.
,
Hirouchi
,
S.
, and
Bando
,
M.
,
2016
, “
Investigation on Method of Elasto-Plastic Analysis for Piping System (Benchmark Analysis)
,”
ASME
Paper No. PVP2016-63186.10.1115/PVP2016-63186
8.
Japan Electric Association
, 2015, “
Code for Seismic Design of Nuclear Power Plants
,” Japan Electric Association, Tokyo, Japan, Standard No. JEAC4601-2015 (in Japanese).
9.
ASME,
2017
, “
ASME Boiler and Pressure Vessel Code, Section III, NB-3656, New York.
10.
Nakamura
,
I.
,
Otani
,
I.
,
Morishita
,
M.
,
Shiratori
,
M.
,
Watakabe
,
T.
, and
Shibutani
,
T.
, 2017, “
Seismic Qualification of Piping Systems by Detailed Inelastic Response Analysis—Part 3: Variation in Elastic-Plastic Analysis Results on Carbon Steel Pipes From the Benchmark Analyses and the Parametric Analysis
,”
ASME
Paper No. PVP2017-65316.10.1115/PVP2017-65316
11.
Watakabe
,
T.
,
Nakamura
,
I.
,
Otani
,
A.
,
Morishita
,
M.
,
Shibutani
,
T.
, and
Shiratori
,
M.
,
2017
, “
Seismic Qualification of Piping Systems by Detailed Inelastic Response Analysis—Part-4: Second Round Benchmark Analyses With Stainless Steel Piping Component Test
,”
ASME
Paper No. PVP2017-65324.10.1115/PVP2017-65324
12.
JSME,
2019
, “
An Alternative Rules on Seismic Design of Seismic S Class Piping by Elastic-Plastic Response Analysis
,” Japan Society of Mechanical Engineers, Tokyo, Japan, Standard No. JSME NC-CC-008 (in Japanese).
13.
Morishita
,
M.
,
Otani
,
A.
,
Watakabe
,
T.
,
Nakamura
,
I.
,
Shibutani
,
T.
, and
Shiratori
,
M.
,
2017
, “
Seismic Qualification of Piping Systems by Detailed Inelastic Response Analysis—Part 1: A Code Case for Piping Seismic Evaluation Based on Detailed Inelastic Response Analysis
,”
ASME
Paper No. PVP2017-65166.10.1115/PVP2017-65166
14.
Otani
,
A.
,
Shibutani
,
T.
,
Morishita
,
M.
,
Nakamura
,
I.
,
Watakabe
,
T.
, and
Shiratori
,
M.
, 2017, “
Seismic Qualification of Piping System by Detailed Inelastic Response Analysis—Part 2: A Guideline for Piping Seismic Inelastic Response Analysis
,”
ASME
Paper No. PVP2017-65190.10.1115/PVP2017-65190
15.
JSME
, 2016, “
Code for Nuclear Power Generation Facilities: Rules on Design and Construction for Nuclear Power Plants
,” Japan Society of Mechanical Engineers, Tokyo, Japan, Standard No. JSME S NC1-2016 (in Japanese).
16.
ASME,
2017
, “
ASME B&PV CODE, Section III, Division 5, Appendix HBB-T-1413
,” American Society of Mechanical Engineer, New York.
17.
Nara
,
K.
,
Nakamura
,
S.
,
Yasunami
,
H.
, and
Kawabata
,
F.
,
2004
, “
Statistic Investigation for Thickness and Strength of Structural Steel Plate Used for Bridge
,”
J. Jpn. Soc. Civ. Eng.
, I–66(752), pp.
299
310
(in Japanese).
18.
JSME
, 2016, “
Code for Nuclear Power Generation Facilities: Rules on Design and Construction for Nuclear Power Plants
,” Japan Society of Mechanical Engineer, Tokyo, Japan, Standard No. JSME S NC2-2016 (in Japanese).
19.
Clough
,
R. W.
,
1969
, “
Analysis of Structural Vibrations and Dynamic Response
,” Proceedings of
Japan-US Seminar on Matrix Method of Structural Analysis and Design
, Palo Alto, CA.
20.
LSTC,
2016
, “LS-DYNA User's Manual, Vol. I,
*DAMPING_FREQUENCY_RANGE
,” LS-DYNA R8.0, Mar. 2016, r:6319, Livermore Software Technology Corp. (LSTC), Translated by JSOL.
21.
ASME
, “
ASME B&PV CODE, Section. III, Division 1, Appendix N, N-1222.3: Time History Broadening,” American Society of Mechanical Engineers, New York.
22.
ASME
, “
ASME B&PV CODE, Section VIII, 2017, Division 2, Annex 5-B, Histogram Development and Cycle Counting for Fatigue Analysis
.”
23.
Manson
,
S. S.
,
1965
, “
Fatigue: A Complex Subject-Some Simple Approximations
,”
Exp. Mech.
,
5
(
4
), p.
193
.10.1007/BF02321056
You do not currently have access to this content.