Abstract

Flow-induced vibration of a single cylinder and two cylinders in tandem and side-by-side configurations is experimentally investigated in this paper in the subcritical regime. The natural frequency of the system varied from 8.8 Hz to 46.2 Hz. The mass ratio, m*, ranged between 158 and 643 while the damping ratio, ζ, between 0.0005 and 0.009. The pairs of cylinders present a spacing ratio of 1.26 (P/D and L/D). In all cases, one and both cylinders (BV) were free to vibrate. Experiments were performed in an aerodynamic channel with a constant height and a variable width, for the evaluation of the influence of the blockage ratio (BR), using accelerometers and hot wire anemometry. The reference velocity, measured at the entrance of the test section was used to calculate the reduced velocity, Vr = U/fnD, with values from 4 to 132 and the Reynolds number between 3 × 103 and 8 × 104. The root-mean-square-values of the displacement amplitudes, Y/D, were obtained through the integration of the acceleration signals. Fourier and continuous wavelets were employed in the analysis. For a single cylinder free to vibrate, the higher amplitudes occur at two distinct reduced velocities, associated with the vibration modes of the cylinder. The vibration amplitude of a single cylinder increased as the blockage ratio increased, decreasing for the highest blockage ratio investigated. For the case of cylinders in tandem, the presence of the fixed cylinder in the wake of the cylinder free to vibrate amplifies the vibration response at high reduced velocities. When the blockage ratio is increased, a sudden increase in the vibration amplitude is observed. When both cylinders are free to vibrate, the relation between the natural frequencies of both cylinders influences the response amplitudes. In the case with two cylinders side-by-side, the vibration amplitude remains similar to a single cylinder, but when both cylinders are free to vibrate, the presence and the influence of flow bistability is observed.

References

1.
Blevins
,
R. D.
,
1990
,
Flow-Induced Vibration
, 2nd ed.,
Van Nostrand Reinhold
,
New York
.
3.
Sumner
,
D.
,
2010
, “
Two Circular Cylinders in Cross-Flow: A Review
,”
J. Fluids Struct.
,
26
(
6
), pp.
849
899
.10.1016/j.jfluidstructs.2010.07.001
4.
Igarashi
,
T.
,
1981
, “
Characteristics of the Flow Around Two Circular Cylinders Arranged in Tandem
,”
Bull. Jpn. Soc. Mech. Eng.
,
24
(
188
), pp.
323
331
.10.1299/jsme1958.24.323
5.
Moretti
,
P. M.
,
1993
, “
Flow-Induced Vibrations in Arrays of Cylinders
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
99
114
.10.1146/annurev.fl.25.010193.000531
6.
Williamson
,
C. H. K.
, and
Govardhan
,
R.
,
2008
, “
A Brief Review of Recent Results in Vortex-Induced Vibrations
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
6–7
), pp.
713
35
.10.1016/j.jweia.2007.06.019
7.
Kim
,
S.
,
Alam
,
M. M.
,
Sakamoto
,
H.
, and
Zhou
,
Y.
,
2009
, “
Flow-Induced Vibrations of Two Circular Cylinders in Tandem Arrangement. Part 1: Characteristics of Vibration
,”
J. Wind Eng. Ind. Aerodyn.
,
97
(
5–6
), pp.
304
311
.10.1016/j.jweia.2009.07.004
8.
Modir
,
A.
,
Kahrom
,
M.
, and
Farshidianfar
,
A.
,
2016
, “
Mass Ratio Effect on Vortex Induced Vibration of a Flexibly Mounted Circular Cylinder, an Experimental Study
,”
Int. J. Mar. Energy
,
16
, pp.
1
11
.10.1016/j.ijome.2016.05.001
9.
Huera-Huarte
,
F. J.
,
Bangash
,
Z. A.
, and
González
,
L. M.
,
2016
, “
Multi-Mode Vortex and Wake-Induced Vibrations of a Flexible Cylinder in Tandem Arrangement
,”
J. Fluids Struct.
,
66
, pp.
571
88
.10.1016/j.jfluidstructs.2016.07.019
10.
Qin
,
B.
,
Alam
,
M. M.
,
Ji
,
C.
,
Liu
,
Y.
, and
Xu
,
S.
,
2018
, “
Flow-Induced Vibrations of Two Cylinders of Different Natural Frequencies
,”
Ocean Eng.
,
155
, pp.
189
200
.10.1016/j.oceaneng.2018.02.048
11.
Elhimer
,
M.
,
Harran
,
G.
,
Hoarau
,
Y.
,
Cazin
,
S.
,
Marchal
,
M.
, and
Braza
,
M.
,
2016
, “
Journal of Fluids and Structures. Coherent and Turbulent processes in the Bistable Regime Around a Tandem of Cylinders Including Reattached Flow Dynamics by Means of High-Speed PIV
,”
J. Fluids Struct.
,
60
, pp.
62
79
.10.1016/j.jfluidstructs.2015.10.008
12.
Mysa
,
R. C.
,
Kaboudian
,
A.
, and
Jaiman
,
R. K.
,
2016
, “
On the Origin of Wake-Induced Vibration in Two Tandem Circular Cylinders at Low Reynolds Number
,”
J. Fluids Struct.
,
61
, pp.
76
98
.10.1016/j.jfluidstructs.2015.11.004
13.
Xu
,
W.
,
Ji
,
C.
,
Sun
,
H.
,
Ding
,
W.
, and
Bernitsas
,
M.
,
2019
, “
Flow-Induced Vibration of Two Elastically Mounted Tandem Cylinders in Cross-Flow at Subcritical Reynolds Numbers
,”
Ocean Eng.
,
173
, pp.
375
387
.10.1016/j.oceaneng.2019.01.016
14.
Zdravkovich
,
M. M.
,
2002
, “
Flow Around Circular Cylinders—Applications
,” 1st ed., Vol.
2
,
Oxford University Press
,
New York
.
15.
de Paula
,
A. V.
, and
Möller
,
S. V.
,
2018
, “
On the Chaotic Nature of Bistable Flows
,”
Exp. Therm. Fluid Sci.
,
94
, pp.
172
191
.10.1016/j.expthermflusci.2018.01.006
16.
Chen
,
W.
,
Ji
,
C.
,
Xu
,
W.
,
Liu
,
S.
, and
Campbell
,
J.
,
2015
, “
Response and Wake Patterns of Two Side-by-Side Elastically Supported Circular Cylinders in Uniform Laminar Cross-Flow
,”
J. Fluids Struct.
,
55
, pp.
218
236
.10.1016/j.jfluidstructs.2015.03.002
17.
Cui
,
Z.
,
Zhao
,
M.
, and
Teng
,
B.
,
2014
, “
Vortex-Induced Vibration of Two Elastically Coupled Cylinders in Side-by-Side Arrangement
,”
J. Fluids Struct.
,
44
, pp.
270
91
.10.1016/j.jfluidstructs.2013.11.007
18.
Kim
,
S.
, and
Alam
,
M. M.
,
2015
, “
Characteristics and Suppression of Flow-Induced Vibrations of Two Side-by-Side Circular Cylinders
,”
J. Fluids Struct.
,
54
, pp.
629
642
.10.1016/j.jfluidstructs.2015.01.004
19.
Huera-Huarte
,
F. J.
, and
Gharib
,
M.
,
2011
, “
Flow-Induced Vibrations of a Side-by-Side Arrangement of Two Flexible Circular Cylinders
,”
J. Fluids Struct.
,
27
(
3
), pp.
354
366
.10.1016/j.jfluidstructs.2011.01.001
20.
Möller
,
S. V.
,
Silveira
,
R. S.
,
de Paula
,
A. V.
,
Indrusiak
,
M. L. S.
, and
Olinto
,
C. R.
,
2015
, “
Some Features of the Flow on Cylinders in Aerodynamic Channels and Considerations About the Effect of the Blockage Ratio Part 1: Single Cylinder
,”
ERCOFTAC Bull.
,
104
, pp.
24
29
.https://www.researchgate.net/publication/336218477_Some_Features_of_the_Flow_on_Cylinders_in_Aerodynamic_Channels_and_Considerations_About_the_Effect_of_the_Blockage_Ratio_Part_1_Single_Cylinder
21.
Kumar
,
S.
,
2016
, “
Effect of Channel Inlet Blockage on the Wake Structure of a Rotationally Oscillating Cylinder
,”
ASME J. Fluids Eng.
,
138
(
12
), pp.
1
18
.10.1115/1.4034193
22.
Zhao
,
M.
,
Tong
,
F.
, and
Cheng
,
L.
,
2012
, “
Numerical Simulation of Two-Degree-of-Freedom Vortex-Induced Vibration of a Circular Cylinder Between Two Lateral Plane Walls in Steady Currents
,”
ASME J. Fluids Eng.
,
134
(
10
), p.
104501
.10.1115/1.4007426
23.
Barlow
,
J. B.
,
Rae
,
W. H.
, and
Pope
,
A.
,
1999
,
Low-Speed Wind Tunnel Testing
, 3rd ed.,
Wiley
,
New York
.
24.
Prasanth
,
T. K.
,
Behara
,
S.
,
Singh
,
S. P.
,
Kumar
,
R.
, and
Mittal
,
S.
,
2006
, “
Effect of Blockage on Vortex-Induced Vibrations at Low Reynolds Numbers
,”
J. Fluids Struct.
,
22
(
6–7
), pp.
865
876
.10.1016/j.jfluidstructs.2006.04.011
25.
Sharify
,
E. M.
,
Saito
,
H.
,
Harasawa
,
H.
,
Takahashi
,
S.
, and
Arai
,
N.
,
2013
, “
Experimental and Numerical Study of Blockage Effects on Flow Characteristics Around a Square-Section Cylinder
,”
J. Jpn. Soc. Exp. Mech.
,
13
(Special Issue), pp.
s7
s12
.10.11395/jjsem.13.s7
26.
TEMA,
1999
,
Standards of the Tubular Exchanger Manufacturers Association
, 8th ed.,
TEMA
,
New York
.
27.
Zukauskas
,
A. A.
,
1972
, “
Heat Transfer From Tubes in Crossflow
,”
Advances in Heat Transfer
, Vol.
8
,
Academic Press
,
New York
, pp.
93
160
. 10.1016/S0065-2717(08)70038-8
28.
Païdoussis
,
M. P.
,
1983
, “
A Review of Flow-Induced Vibrations in Reactors and Reactor Components
,”
Nucl. Eng. Des.
,
74
(
1
), pp.
31
60
.10.1016/0029-5493(83)90138-3
29.
Olinto
,
C. R.
,
Indrusiak
,
M. L. S.
,
Endres
,
L. A. M.
, and
Möller
,
S. V.
,
2009
, “
Experimental Study of the Characteristics of the Flow in the First Rows of Tube Banks
,”
Nucl. Eng. Des.
,
239
(
10
), pp.
2022
2034
.10.1016/j.nucengdes.2009.05.017
30.
de Paula
,
A. V.
, and
Möller
,
S. V.
,
2013
, “
Finite Mixture Model Applied in the Analysis of a Turbulent Bistable Flow on Two Parallel Circular Cylinders
,”
Nucl. Eng. Des.
,
264
, pp.
203
213
.10.1016/j.nucengdes.2013.02.029
31.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
32.
Holman
,
J. P.
,
2012
, “
Experimental Methods for Engineers
,” 8th ed.,
McGraw-Hill
,
New York
.
33.
Bendat
,
J. S.
, and
Piersol
,
A. G.
,
2010
, “
Random Data: Analysis and Measurement Procedures
,” 4th ed.,
Wiley
,
New York
.
34.
Indrusiak
,
M. L. S.
, and
Möller
,
S. V.
,
2011
, “
Wavelet Analysis of Unsteady Flows: Application on the Determination of the Strouhal Number of the Transient Wake Behind a Single Cylinder
,”
Exp. Therm. Fluid Sci.
,
35
(
2
), pp.
319
327
.10.1016/j.expthermflusci.2010.10.001
35.
Percival
,
D. B.
, and
Walden
,
A. T.
,
2000
, “
Wavelet Methods for Time Series Analysis
,”
Cambridge University Press
,
Cambridge, UK
.
36.
Hamdan
,
M. N.
,
Jubran
,
B. A.
,
Shabaneh
,
N. H.
, and
Abu-Samak
,
M.
,
1996
, “
Comparison of Various Basic Wavelets for the Analysis of Flow-Induced Vibration of a Cylinder in Cross Flow
,”
J. Fluids Struct.
,
10
(
6
), pp.
633
651
.10.1006/jfls.1996.0042
37.
Lian
,
J.
,
Zhang
,
Y.
,
Liu
,
F.
, and
Zhao
,
Q.
,
2015
, “
Analysis of the Ground Vibration Induced by High Dam Flood Discharge Using the Cross Wavelet Transform Method
,”
J. Renewable Sustainable Energy
,
7
(
4
), p.
043146
.10.1063/1.4928520
38.
Wu
,
Q.
,
Wang
,
Y.
, and
Wang
,
G.
,
2017
, “
Experimental Investigation of Cavitating Flow-Induced Vibration of Hydrofoils
,”
Ocean Eng.
,
144
, pp.
50
60
.10.1016/j.oceaneng.2017.08.005
39.
Feng
,
C. C.
,
1968
,
The Measurement of Vortex Induced Effects in Flow Past Stationary and Oscillating Circular and D-Section
,
University of British Columbia
,
Vancouver, Canada
.
40.
Okajima
,
A.
,
Nagamori
,
T.
,
Matsunaga
,
F. e.
, and
Kiwata
,
T.
,
1999
, “
Some Experiments on Flow Induced Vibration of a Circular Cylinder With Surface Roughness
,”
J. Fluids Struct.
,
13
(
7–8
), pp.
853
864
.10.1006/jfls.1999.0241
41.
de Paula
,
A. V.
,
Endres
,
L. A. M.
, and
Möller
,
S. V.
,
2012
, “
Bistable Features of the Turbulent Flow in Tube Banks of Triangular Arrangement
,”
Nucl. Eng. Des.
,
249
, pp.
379
387
.10.1016/j.nucengdes.2012.04.024
You do not currently have access to this content.