Abstract

The purpose of this study was to propose low gas pressure effects on lifetime of natural gas high-density polyethylene (HDPE) pipes by thermal-oxidative aging. The new method to assess the lifetime of HDPE natural gas pipes is based on gas pressure testing. An approach to monitor oxidative induction time (OIT) has been used to predict lifetime. Natural gas HDPE pipes were used to evaluate the effects of low gas pressures on oxidative induction time. In order to emphasize the pressure effects, relatively low temperatures at 45, 55, 65, and 75 °C were utilized for the exposure. The low-pressure conditions were created using air at levels of 0, 0.1, 0.2, 0.3, and 0.4 MPa. The property of high density polyethylene pipes was effectively monitored using the low pressure OIT test. The results show that the aging reaction rate of high density polyethylene pipes increased exponentially with temperature and gas pressure according to the Arrhenius equation. Analytical models were developed to predict the aging reaction rate and lifetime of natural gas HDPE pipes.

References

1.
ISO,
2015
,
Plastics Piping Systems for the Supply of Gaseous Fuels – Polyethylene (PE)
,
British Standards Institution
,
London, UK
, Standard No. 4437.
2.
Schulte
,
U.
,
2006
,
50 Years of Continuous Testing of Pipes Made From Hostalen HDPE Grades Completed
,
Basell Polyolefins Press Release
,
Amsterdam, The Netherlands
.
3.
ISO
,
2018
,
Plastics — Differential Scanning Calorimetry (DSC) — Part 6: Determination of Oxidation Induction Time (Isothermal OIT) and Oxidation Induction Temperature (Dynamic OIT)
,
British Standards Institution
,
London, UK
, Standard No. 11357.
4.
Frank
,
A.
,
Pinter
,
G.
, and
Lang
,
R. W.
,
2009
, “
Prediction of the Remaining Lifetime of Polyethylene Pipes After Up to 30 Years in Use
,”
Polym. Test.
,
28
(
7
), pp.
737
745
.10.1016/j.polymertesting.2009.06.004
5.
Hsuan
,
Y. G.
, and
Li
,
M.
,
2005
, “
Temperature and Pressure Effects on the Degradation of High Density Polyethylene Geogrids
,”
Geotext. Geomembr.
,
23
(
1
), pp.
55
75
.10.1016/j.geotexmem.2004.07.001
6.
Pinter
,
G.
,
Lang
,
R. W.
, and
Haager
,
M. A.
,
2007
, “
Test Concept for Lifetime Prediction of Polyethylene Pressure Pipes
,”
Monatshefte Für Chem. Chem. Mon.
,
138
(
4
), pp.
347
355
.10.1007/s00706-007-0618-1
7.
Mueller
,
W.
, and
Jakob
,
I.
,
2003
, “
Oxidative Resistance of High-Density Polyethylene Geomembranes
,”
Polym. Degrad. Stab.
,
79
(
1
), pp.
161
172
.10.1016/S0141-3910(02)00269-0
8.
Westra
,
L.
,
Breaux
,
M. W.
,
Richard
,
R.
, and Wilson, C. D.,
2014
, “
Hydrostatic Pressure Testing System and Method
,” US, US8731849.
9.
Hoàng
,
E. M.
, and
Lowe
,
D.
,
2008
, “
Lifetime Prediction of a Blue PE100 Water Pipe
,”
Polym. Degrad. Stab.
,
93
(
8
), pp.
1496
1503
.10.1016/j.polymdegradstab.2008.05.008
10.
Huiqing
,
L.
,
Di
,
S.
, and
Jiandong
,
Z.
,
2014
, “
The Method of Life Prediction for Poly-Ethylene Gas Pipeline in Use by Using Accelerating Thermal Aging Test
,” Beijing, China, No. 20140548625.1.
11.
Huiqing
,
L.
,
Di
,
S.
,
Tao
,
M.
, Fang, X., and Li, X.,
2016
, “
Thermal Oxidative Aging Laws of PE Gas Pressure Pipes
,”
Nat. Gas Ind.
,
36
(
4
), pp.
78
83
.10.3787/j.issn.1000-0976.2016.04.012
12.
Wang
,
Y.
,
Lan
,
H. Q.
,
Meng
,
T.
, Chen, S., Zuo, J.-D., and Lin, N.,
2018
, “
A Lifetime Prediction Method of Pressured Gas Polyethylene Pipes by Thermal-Oxidative Aging Test and Tensile Test
,”
ASME J. Pressure Vessel Technol.
,
140
(
1
), p.
11404
.10.1115/1.4038526
13.
ISO
,
2014
,
Rubber, Vulcanized or Thermoplastic — Estimation of Life-Time and Maximum Temperature of Use
,
British Standards Institution
,
London, UK
, Standard No. 11346.
14.
ISO
,
2017
,
Rubber — Determination of Precision of Test Methods
,
Afnor
,
Paris, France
, Standard No. 19983.
15.
Langlois
,
V.
,
Audouin
,
L.
,
Verdu
,
J.
, and
Courtois
,
P.
,
1993
, “
Thermo-Oxidative Aging of Cross-Linked Linear Polyethylene: Stabilizer Consumption and Lifetime Prediction
,”
Polym. Degrad. Stab.
,
40
(
3
), pp.
399
409
.10.1016/0141-3910(93)90150-H
16.
Zheng
,
J.
,
Shi
,
J.
, and
Guo
,
W.
,
2012
, “
Development of Nondestructive Test and Safety Assessment of Electrofusion Joints for Connecting Polyethylene Pipes
,”
ASME J. Pressure Vessel Technol.
,
134
(
2
), p.
021406
.10.1115/1.4004869
17.
Peacock
,
A. J.
, and
Calhoun
,
A.
,
2006
, “
Polymer Degradation and Stability
,”
Polym. Sci.
,
87
(
87
), pp.
171
181
.10.3139/9783446433434.009
18.
Adams
,
T. M.
,
Hall
,
S.
, and
Scavuzzo
,
R. J.
,
2008
, “
Tensile Testing and HDPE Pipes Property Development of High Density Polyethylene Pipe HDPE Pipes
,”
ASME
Paper No. PVP2008-61906.10.1115/PVP2008-61906
19.
Abdelaal
,
F.
, and
Rowe
,
R. K.
,
2014
, “
Application of a Four-Parameter Exponential Decay Model for Modelling Antioxidant Depletion in HDPE Geomembranes
,”
International Conference on Geosynthetics
, Vol.
101
, Berlin, Germany, Sept. 21–25, pp.
21
25
.https://www.researchgate.net/publication/266900439_Application_of_a_fourparameter_exponential_decay_model_for_modelling_antioxidant_depletion_in_HDPE_geomembranes
20.
Vogt
,
H.
,
Enderle
,
H. F.
,
Schulte
,
U.
, and Hessel, J.,
2009
, “
Thermal Aging of PE 100 Pipes for Accelerated Lifetime Prediction Under Service Conditions
,”
International Plastic Pipe Exchange Conference
, Budapest, Hungary, pp.
33
41
.http://www.hesselingtech.de/pdf/budapest_2008_vogt.pdf
21.
ISO,
2011
,
Plastics – Determination of the Melt Mass-Flow Rate (MFR) and Melt Volume-Flow Rate (MVR) of Thermoplastics – Part 2: Method for HDPE Pipes Sensitive to Time-Temperature History and/or Moisture
,
British Standards Institution
,
London, UK
, Standard No.
1133
.
22.
Wang
,
Y.
,
Lan
,
H. Q.
, and
Meng
,
T.
,
2019
, “
Lifetime Prediction of Natural Gas Polyethylene Pipes With Internal Pressures
,”
Eng. Failure Anal.
,
95
, pp.
154
163
.10.1016/j.engfailanal.2018.09.022
23.
Wang
,
Y.
,
Lan
,
H.
, and
Zhang
,
Q. H.
,
2019
, “
A Residual Lifetime Prediction Method of Aging Polyethylene Gas Pipes in Service
,”
ASME
Paper No. PVP2019-93140.10.1115/PVP2019-93140
You do not currently have access to this content.