Abstract

The horizontal continuous casting plays a key role in the production of inner grooved copper tubes. In order to improve the accuracy of the temperature field model of the copper tubes' horizontal continuous casting process, the model heat transfer coefficient was validated through temperature measurement experiment of graphite crystallizer. The finite element model of stress field evolution was established, based on considering the temperature and microstructure changes. It was found that tensile stress was generated in the outer layer of the casting billet and compressive stress was generated in the inner layer, when the casting billet entered the primary cooling zone. The paper investigated the mechanism of the liquid inlet number and shape on the microstructure and stress distribution after the casting billet was solidified. When the number of liquid inlets was 6, the ratio of the semimajor axis of ellipsoid to the short semiaxis was 3:2, and the backward tilt angle was 10 deg, the equivalent stress value of the casting billet was smaller, and the grains were dense and uniform. This paper promotes the research of horizontal continuous casting process and provides measurable reference for improving the quality of casting billet in the further.

References

1.
Zhou
,
J. X.
,
Yan
,
L.
,
Tang
,
J.
,
Sun
,
Z. Z.
, and
Ma
,
L. Q.
,
2018
, “
Interactive Effect of Ant Nest Corrosion and Stress Corrosion on the Failure of Copper Tubes
,”
Eng. Failure Anal.
,
83
, pp.
9
16
.10.1016/j.engfailanal.2017.09.013
2.
Foadian
,
F.
,
Carradó
,
A.
,
Pirling
,
T.
, and
Palkowski
,
H.
,
2016
, “
Residual Stresses Evolution in Cu Tubes, Cold Drawn With Tilted Dies—Neutron Diffraction Measurements and Finite Element Simulation
,”
Mater. Des.
,
107
, pp.
163
170
.10.1016/j.matdes.2016.06.028
3.
Singh
,
S.
, and
Singh
,
R.
,
2018
, “
Continuous Casting
,”
Mater. Sci. Mater. Eng.
, 21(5), pp.
1599
1609
.
4.
Ji
,
C. B.
,
Li
,
J. S.
,
Yang
,
S. F.
, and
Sun
,
L. Y.
,
2013
, “
Large Eddy Simulation of Turbulent Fluid Flow in Liquid Metal of Continuous Casting
,”
J. Iron Steel Res. Int.
,
20
(
1
), pp.
34
39
.10.1016/S1006-706X(13)60041-2
5.
Wu
,
L.
,
Kang
,
H. J.
,
Chen
,
Z. N.
,
Liu
,
N.
, and
Wang
,
T. M.
,
2015
, “
Horizontal Continuous Casting Process Under Electromagnetic Field for Preparing AA3003/AA4045 Clad Composite Hollow Billets
,”
Trans. Nonferrous Met. Soc. China
,
25
(
8
), pp.
2675
2685
.10.1016/S1003-6326(15)63891-2
6.
Mosayebidorcheh
,
S.
, and
Gorji-Bandpy
,
M.
,
2017
, “
Local and Averaged-Area Analysis of Steel Slab Heat Transfer and Phase Change in Continuous Casting Process
,”
Appl. Therm. Eng.
,
118
, pp.
724
733
.10.1016/j.applthermaleng.2017.03.031
7.
Bratu
,
V.
,
Mortici
,
C.
,
Oros
,
C.
, and
Ghiban
,
N.
,
2014
, “
Mathematical Model of Solidification Process in Steel Continuous Casting Taking Into Account the Convective Heat Transfer at Liquid-Solid Interface
,”
Comput. Mater. Sci.
,
94
, pp.
2
7
.10.1016/j.commatsci.2013.12.033
8.
Penumakala
,
P. K.
,
Nallathambi
,
A. K.
,
Specht
,
E.
,
Urlau
,
U.
,
Hamilton
,
D.
, and
Dykes
,
C.
,
2018
, “
Influence of Process Parameters on Solidification Length of Twin-Belt Continuous Casting
,”
Appl. Therm. Eng.
,
134
, pp.
275
286
.10.1016/j.applthermaleng.2018.01.121
9.
Yu
,
Y.
,
Luo
,
X. C.
,
Zhang
,
H. X.
, and
Zhang
,
Q. X.
,
2019
, “
Dynamic Optimization Method of Secondary Cooling Water Quantity in Continuous Casting Based on Three-Dimensional Transient Nonlinear Convective Heat Transfer Equation
,”
Appl. Therm. Eng.
,
160
, p.
113988
.10.1016/j.applthermaleng.2019.113988
10.
Vynnycky
,
M.
, and
Zambrano
,
M.
,
2018
, “
Towards a ‘Moving-Point’ Formulation for the Modelling of Oscillation-Mark Formation in the Continuous Casting of Steel
,”
Appl. Math. Modell.
,
63
, pp.
243
265
.10.1016/j.apm.2018.06.029
11.
Jiang
,
Y. B.
,
Mao
,
X. D.
,
Lei
,
Y.
,
Liu
,
X. H.
,
Wang
,
Y. H.
, and
Xie
,
J. X.
,
2019
, “
Microstructure and Mechanical Property Evolutions of CuNi10Fe1.8Mn1 Alloy Tube Produced by HCCM Horizontal Continuous Casting During Drawing and Its Deformation Mechanism
,”
J. Alloys Compd.
,
771
, pp.
905
913
.10.1016/j.jallcom.2018.09.041
12.
Begum
,
L.
, and
Hasan
,
M.
,
2015
, “
A Numerical Study of 3D Turbulent Melt Flow and Solidification in a Direct Chill Slab Caster With an Open-Top Melt Feeding System
,”
Numer. Heat Transfer, Part A
,
67
(
7
), pp.
719
745
.10.1080/10407782.2014.949143
13.
Yan
,
G. J.
,
Xu
,
Y.
, and
Jiang
,
B. L.
,
2012
, “
The Production of High-Density Hollow Cast-Iron Bars by Vertically Continuous Casting
,”
J. Mater. Process. Technol.
,
212
(
1
), pp.
15
18
.10.1016/j.jmatprotec.2011.07.017
14.
Ji
,
X. K.
,
Zhang
,
H.
,
Luo
,
S.
,
Jiang
,
F. L.
, and
Fu
,
D. F.
,
2016
, “
Microstructures and Properties of Al–Mg–Si Alloy Overhead Conductor by Horizontal Continuous Casting and Continuous Extrusion Forming Process
,”
Mater. Sci. Eng.: A
,
649
, pp.
128
134
.10.1016/j.msea.2015.09.114
15.
Zhang
,
X. Y.
,
Zhang
,
H.
,
Kong
,
X. X.
, and
Fu
,
D. F.
,
2015
, “
Microstructure and Properties of Al-0.70Fe-0.24Cu Alloy Conductor Prepared by Horizontal Continuous Casting and Subsequent Continuous Extrusion Forming
,”
Trans. Nonferrous Met. Soc. China
,
25
(
6
), pp.
1763
1769
.10.1016/S1003-6326(15)63781-5
16.
Yan
,
Z. M.
,
Li
,
X. T.
,
Qi
,
K.
,
Cao
,
Z. Q.
,
Zhang
,
X. L.
, and
Li
,
T. J.
,
2009
, “
Study on Horizontal Electromagnetic Continuous Casting of CuNi10Fe1Mn Alloy Hollow Billets
,”
Mater. Des.
,
30
(
6
), pp.
2072
2076
.10.1016/j.matdes.2008.08.047
17.
Kumar
,
A.
, and
Dutta
,
P.
,
2005
, “
Modeling of Transport Phenomena in Continuous Casting of Non-Dendritic Billets
,”
Int. J. Heat Mass Transfer
,
48
(
17
), pp.
3674
3688
.10.1016/j.ijheatmasstransfer.2004.05.041
18.
Stewart
,
C. M.
, and
Gordon
,
A. P.
,
2012
, “
Constitutive Modeling of Multistage Creep Damage in Isotropic and Transversely Isotropic Alloys With Elastic Damage
,”
ASME J. Pressure Vessel Technol.
,
134
(
4
), p.
041401
.10.1115/1.4005946
19.
Han
,
Y.
,
Xiao
,
Y.
,
Zhang
,
A. Y.
,
Liu
,
F.
,
Yu
,
E. L.
, and
Gao
,
Y.
,
2018
, “
Study on Influence of Lateral Liquid Feeding Into Crystallizer on Crystallization Process of Copper Billets
,”
Int. J. Heat Mass Transfer
,
125
, pp.
104
115
.10.1016/j.ijheatmasstransfer.2018.04.068
20.
Xie
,
X.
,
Yu
,
S.
,
Long
,
M. J.
,
Chen
,
D. F.
,
Duan
,
H. M.
,
Chen
,
H. B.
,
Fan
,
H. L.
, and
Liu
,
T.
,
2017
, “
Fluid Flow and Heat Transfer Behavior of Liquid Steel in Slab Mold With Different Corner Structures. Part 1: Mathematical Model and Verification
,”
Numer. Heat Transfer, Part A
,
72
(
8
), pp.
642
656
.10.1080/10407782.2017.1394137
21.
Kraft
,
F. F.
, and
Jamison
,
T. L.
,
2012
, “
Mechanical Behavior of Internally Pressurized Copper Tube for New HVACR Applications
,”
ASME J. Pressure Vessel Technol.
,
134
(
6
), p.
061213
.10.1115/1.4007035
22.
Li
,
R.
,
Ma
,
J. X.
, and
Cui
,
Q. Y.
,
2010
,
Casting Process Simulation ProCAST From Introduction to Mastery
,
China Water Conservancy and Hydropower Press
,
Beijing, China
, pp.
434
442
.
23.
Wang
,
J.
,
2015
, “
Numerical Simulation of Liquid Steel Flow, Heat Transfer and Solidification in Continuous Casting Mold
,” M.S. thesis, Wuhan University of Science and Technology, Wuhan, China, pp.
40
45
.
You do not currently have access to this content.