Abstract

The local strains obtained from the best-known analytical approximations, namely, Neuber's rule, equivalent strain energy density method, and linear rule, were compared with those resulting from finite element analysis. It was found that apart from Neuber's rule with the elastic stress concentration factorKt, all the aforementioned analytical methods underestimate the local strains for all notch root radius, strain amplitude levels, at room temperature and 550 °C. Neuber's rule withKtslightly overestimates the maximum strains for lower notch root radius, namely, 1.25 mm, at high temperature. Based on the analytically and numerically obtained notch root strains, the fatigue lives were estimated using the Coffin–Manson–Basquin equation. Besides, a numerical assessment of fatigue lives was made based on Brown–Miller and maximum shear strain multi-axial fatigue life criteria. It was found that all these methods provide inaccurate fatigue life results for all notch root radius, strain amplitude level, and under both temperatures conditions. Therefore, a new method was suggested, for which only the applied strain amplitude is needed to calculate the fatigue life of notched components. It was revealed that the suggested method provides a good fatigue life prediction at a higher temperature loading state.

References

1.
Neuber
,
H.
,
1961
, “
Theory of Stress Concentration for Shear-Strained Prismatical Bodies With Arbitrary Nonlinear Stress-Strain Law
,”
ASME J. Appl. Mech.
,
28
(
4
), pp.
544
550
.10.1115/1.3641780
2.
Molski
,
K.
, and
Glinka
,
G.
,
1981
, “
A Method of Elastic-Plastic Stress and Strain Calculation at a Notch Root
,”
Mater. Sci. Eng.
,
50
(
1
), pp.
93
100
.10.1016/0025-5416(81)90089-6
3.
Glinka
,
G.
,
1985
, “
Energy Density Approach to Calculation of Inelastic Strain-Stress Near Notches and Cracks
,”
Eng. Fract. Mech.
,
22
(
3
), pp.
485
508
.10.1016/0013-7944(85)90148-1
4.
Ye
,
D.
,
Hertel
,
O.
, and
Vormwald
,
M.
,
2008
, “
A Unified Expression of Elastic–Plastic Notch Stress–Strain Calculation in Bodies Subjected to Multiaxial Cyclic Loading
,”
Int. J. Solids Struct.
,
45
(
24
), pp.
6177
6189
.10.1016/j.ijsolstr.2008.07.012
5.
Topper
,
T.
,
Wetzel
,
R. M.
, and
Morrow
,
J.
,
1967
, “
Neuber's Rule Applied to Fatigue of Notched Specimens
,”
Illinois University at Urbana Department Theoretical Applied Mechanics
, Urbana, IL.
6.
Hoffmann
,
M.
, and
Seeger
,
T.
,
1985
, “A Generalized Method for Estimating Multiaxial Elastic-Plastic Notch Stresses and Strains Part 1: Theory,”
J. Eng. Mater. Technol.
, 107, pp.
250
254
.10.1115/1.3225814
7.
Lieb
,
K. C.
,
Horstman
,
R. T.
,
Power
,
B.
,
Meltzer
,
R. L.
,
Vieth
,
M. B.
,
Seeger
,
T.
, and
Heuler
,
P.
,
1980
, “
Generalized Application of Neuber's Rule
,”
J. Test. Eval.
,
8
(
4
), pp.
199
204
.10.1520/JTE11613J
8.
Stephens
,
R. I.
,
Fatemi
,
A.
,
Stephens
,
R. R.
, and
Fuchs
,
H. O.
,
2000
,
Metal Fatigue in Engineering
,
Wiley
,
Hoboken, NJ
.
9.
Wang
,
K. C.
, and
Sharpe
, and
W. N.
, Jr.
,
1991
, “
Evaluation of a Modified Cyclic Neuber Relation
,”
J. Eng. Mater. Technol.,
113
(
3
), pp.
350
353
.10.1115/1.2903417
10.
Moftakhar
,
A.
,
Buczynski
,
A.
, and
Glinka
,
G.
,
1995
, “
Calculation of Elasto-Plastic Strains and Stresses in Notches Under Multiaxial Loading
,”
Int. J. Fract.
,
70
(
4
), pp.
357
373
.10.1007/BF00032453
11.
Singh
,
M. N. K.
,
Glinka
,
G.
, and
Dubey
,
R. N.
,
1996
, “
Elastic-Plastic Stress-Strain Calculation in Notched Bodies Subjected to Non-Proportional Loading
,”
Int. J. Fract.
,
76
(
1
), pp.
39
60
.10.1007/BF00034029
12.
Ye
,
D.
,
Matsuoka
,
S.
,
Suzuki
,
N.
, and
Maeda
,
Y.
,
2004
, “
Further Investigation of Neuber's Rule and the Equivalent Strain Energy Density (ESED) Method
,”
Int. J. Fatigue
,
26
(
5
), pp.
447
455
.10.1016/j.ijfatigue.2003.10.002
13.
Campagnolo
,
A.
,
Berto
,
F.
, and
Marangon
,
C.
,
2016
, “
Cyclic Plasticity in Three-Dimensional Notched Components Under in-Phase Multiaxial Loading at R=− 1
,”
Theor. Appl. Fract. Mech.
,
81
, pp.
76
88
.10.1016/j.tafmec.2015.10.004
14.
Li
,
J.
,
Zhang
,
Z. P.
, and
Li
,
C. W.
,
2017
, “
Elastic-Plastic Stress-Strain Calculation at Notch Root Under Monotonic, Uniaxial and Multiaxial Loadings
,”
Theor. Appl. Fract. Mech.
,
92
, pp.
33
46
.10.1016/j.tafmec.2017.05.005
15.
Zhu
,
S. P.
,
Xu
,
S.
,
Hao
,
M. F.
,
Liao
,
D.
, and
Wang
,
Q.
,
2019
, “
Stress-Strain Calculation and Fatigue Life Assessment of V-Shaped Notches of Turbine Disk Alloys
,”
Eng. Failure Anal.
,
106
, p.
104187
10.1016/j.engfailanal.2019.104187
16.
Barkey
,
M. E.
,
Socie
,
D. F.
, and
Hsia
,
K. J.
,
1994
, “
A Yield Surface Approach to the Estimation of Notch Strains for Proportional and Non-Proportional Cyclic Loading
,”
ASME J. Eng. Mater. Technol.
,
116
(
2
), pp.
173
180
.10.1115/1.2904269
17.
Köttgen
,
V. B.
,
Barkey
,
M. E.
, and
Socie
,
D. F.
,
2007
, “
Pseudo Stress and Pseudo Strain Based Approaches to Multiaxial Notch Analysis
,”
Fatigue Fract. Eng. Mater. Struct.
,
18
(
9
), pp.
981
1006
.10.1111/j.1460-2695.1995.tb00922.x
18.
Hertel
,
O.
,
Vormwald
,
M.
,
Seeger
,
T.
,
Döring
,
R.
, and
Hoffmeyer
,
J.
,
2005
, “
Notch Stress and Strain Approximation Procedures for Application With Multiaxial Nonproportional Loading”: This Contribution Represents an Extended Version of a Keynote Given During the 7th International Conference on Biaxial/Multiaxial Fatigue and Fracture (7th ICBMFF
),”
Mater. Test.
,
47
(
5
), pp.
268
277
.10.3139/120.100656
19.
Jiang
,
Y.
, and
Sehitoglu
,
H.
,
1996
, “
Modeling of Cyclic Ratchetting Plasticity, Part I: Development of Constitutive Relations
,”
ASME J. Appl. Mech.
,
63
(
3
), pp.
720
725
.10.1115/1.2823355
20.
Firat
,
M.
,
2011
, “
A Notch Strain Calculation of a Notched Specimen Under Axial-Torsion Loadings
,”
Mater. Des.
,
32
(
7
), pp.
3876
3882
.10.1016/j.matdes.2011.03.005
21.
Chaboche
,
J. L.
,
1989
, “
Constitutive Equations for Cyclic Plasticity and Cyclic Viscoplasticity
,”
Int. J. Plasticity
,
5
(
3
), pp.
247
302
.10.1016/0749-6419(89)90015-6
22.
Antoni
,
N.
,
2019
, “
A Novel Rapid Method of Purely Elastic Solution Correction to Estimate Multiaxial Elastic-Plastic Behaviour
,”
J. Comput. Des. Eng.
,
6
(
3
), pp.
269
283
.10.1016/j.jcde.2019.01.002
23.
Prasad
,
Y. V. R. K.
,
Rao
,
K. P.
, and
Sasidhar
,
S.
eds.,
2015
,
Hot Working Guide: A Compendium of Processing Maps
,
ASM International
,
Novelty, OH
.
24.
Basu
,
K.
,
Das
,
M.
,
Bhattacharjee
,
D.
, and
Chakraborti
,
P. C.
,
2007
, “
Effect of Grain Size on Austenite Stability and Room Temperature Low Cycle Fatigue Behaviour of Solution Annealed AISI 316 LN Austenitic Stainless Steel
,”
Mater. Sci. Technol.
,
23
(
11
), pp.
1278
1284
.10.1179/174328407X179575
25.
Roy
,
S. C.
,
Goyal
,
S.
,
Sandhya
,
R.
, and
Ray
,
S. K.
,
2012
, “
Low Cycle Fatigue Life Prediction of 316 L (N) stainless Steel Based on Cyclic Elasto-Plastic Response
,”
Nucl. Eng. Des.
,
253
, pp.
219
225
.10.1016/j.nucengdes.2012.08.024
26.
Wu
,
H. C.
,
Yang
,
B.
,
Wang
,
S. L.
, and
Zhang
,
M. X.
,
2015
, “
Effect of Oxidation Behavior on the Corrosion Fatigue Crack Initiation and Propagation of 316 LN Austenitic Stainless Steel in High Temperature Water
,”
Mater. Sci. Eng. A
,
633
, pp.
176
183
.10.1016/j.msea.2015.03.026
27.
Yuan
,
X.
,
Yu
,
W.
,
Fu
,
S.
,
Yu
,
D.
, and
Chen
,
X.
,
2016
, “
Effect of Mean Stress and Ratcheting Strain on the Low Cycle Fatigue Behavior of a Wrought 316 LN Stainless Steel
,”
Mater. Sci. Eng. A
,
677
, pp.
193
202
.10.1016/j.msea.2016.09.053
28.
Xiong
,
Y.
,
Watanabe
,
Y.
, and
Shibayama
,
Y.
,
2020
, “
Effects of Dissolved Hydrogen on Low-Cycle Fatigue Behaviors and Hydrogen Uptake of 316 LN Austenitic Stainless Steel in Simulated Pressurized Water Reactor Primary Water
,”
Int. J. Fatigue
,
134
, p.
105457
.10.1016/j.ijfatigue.2019.105457
29.
Abarkan
,
I.
,
Shamass
,
R.
,
Achegaf
,
Z.
, and
Khamlichi
,
A.
,
2020
, “
Numerical and Analytical Studies of Low Cycle Fatigue Behavior of 316 LN Austenitic Stainless Steel
,”
ASME J. Pressure Vessel Technol.
, epub.10.1115/1.4045897
30.
Goyal
,
S.
,
Veerababu
,
J.
,
Sandhya
,
R.
,
Laha
,
K.
, and
Bhaduri
,
A. K.
,
2016
, “
Effect of Notch on Low Cycle Fatigue Behaviour of 316 LN Stainless Steel
,”
Trans. Indian Inst. Met.
,
69
(
5
), pp.
1015
1022
.10.1007/s12666-015-0609-6
31.
Agrawal
,
R.
,
Veerababu
,
J.
,
Goyal
,
S.
,
Sandhya
,
R.
,
Uddanwadiker
,
R.
, and
Padole
,
P.
,
2018
, “
Estimation of Low Cycle Fatigue Response of 316 LN Stainless Steel in the Presence of Notch
,”
J. Mater. Eng. Perform.
,
27
(
2
), pp.
590
600
.10.1007/s11665-018-3149-5
32.
Coffin
, and
L. F.
, Jr.
,
1954
, “
A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal
,”
Transactions of the American Society of Mechanical Engineers
, Vol.
76
,
New York
, pp.
931
950
.
33.
Manson
,
S. S.
,
1953
,
Behavior of Materials Under Conditions of Thermal Stress
,
National Advisory Committee for Aeronautics
,
Washington, DC
.
34.
Basquin
,
O. H.
,
1910
, “
The Exponential Law of Endurance Tests
,”
Proc. Am. Soc. Test. Mater.
,
10
, pp.
625
630
.https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=356983
35.
Gowhari-Anaraki
,
A. R.
, and
Hardy
,
S. J.
,
1991
, “
Low Cycle Fatigue Life Predictions for Hollow Tubes With Axially Loaded Axisymmetric Internal Projections
,”
J. Strain Anal. Eng. Des.
,
26
(
2
), pp.
133
146
.10.1243/03093247V262133
36.
Brown
,
M. W.
, and
Miller
,
K. J.
,
1973
, ” “
A Theory for Fatigue Failure Under Multiaxial Stress-Strain Conditions
,”
Proc. Inst. Mech. Eng.
,
187
(
1
), pp.
745
755
.10.1243/PIME_PROC_1973_187_161_02
37.
Fatemi
,
A.
, and
Shamsaei
,
N.
,
2011
, “
Multiaxial Fatigue: An Overview and Some Approximation Models for Life Estimation
,”
Int. J. Fatigue
,
33
(
8
), pp.
948
958
.10.1016/j.ijfatigue.2011.01.003
39.
Abaqus 6.11
,
2011
,
Dassault Systemes Simulia
,
Corp Providence
,
RI
.
40.
Veerababu
,
J.
,
Goyal
,
S.
,
Sandhya
,
R.
, and
Laha
,
K.
,
2017
, “
Fatigue Life Estimation of Notched Specimens of Modified 9Cr-1Mo Steel Under Uniaxial Cyclic Loading
,”
Mater. High Temper.
,
34
(
4
), pp.
250
259
.10.1080/09603409.2017.1308084
41.
Chaboche
,
J. L.
,
1986
, “
Time-Independent Constitutive Theories for Cyclic Plasticity
,”
Int. J. Plasticity
,
2
(
2
), pp.
149
188
.10.1016/0749-6419(86)90010-0
42.
Klesnil
,
M.
, and
Lukác
,
P.
,
1980
,
Fatigue of Metallic Materials
, Vol.
71
,
Elsevier
,
Amsterdam, The Netherlands
.
43.
Peterson
,
R. E.
,
1974
,
Stress Concentration Factors
,
Wiley
,
New York
.
44.
Fe-Safe 6.2
,
2011
,
Dassault Systemes Simulia
,
Corp
,
Providence RI
.
45.
Dassault Systemes Simulia Corp.
,
2014
,
Fatigue Theory Reference Manual
, Vol.
2
,
Safe Technology Limited
,
Sheffield, UK
.
46.
Golos
,
K.
, and
Ellyin
,
F.
,
1989
, “
Total Strain Energy Density as a Fatigue Damage Parameter
,”
Advances in Fatigue Science and Technology
,
Springer
,
Dordrecht, The Netherlands
, pp.
849
858
.
47.
Stowell
,
E. Z.
,
1950
,
Stress and Strain Concentration at a Circular Hole in an Infinite Plate
,
National Advisory Committee for Aeronautics
,
Washington, DC
.
48.
Morrow
,
J.
,
1965
, “
Cyclic Plastic Strain Energy and Fatigue of Metals. In Internal Friction, Damping, and Cyclic Plasticity
,” Internal Friction, Damping, and Cyclic Plasticity, B. Lazan, ed.,
ASTM International
, West Conshohocken, PA, pp.
45
87
.
49.
Goyal
,
S.
,
Mandal
,
S.
,
Parameswaran
,
P.
,
Sandhya
,
R.
,
Athreya
,
C. N.
, and
Laha
,
K.
,
2017
, “
A Comparative Assessment of Fatigue Deformation Behavior of 316 LN SS at Ambient and High Temperature
,”
Mater. Sci. Eng. A
,
696
, pp.
407
415
.10.1016/j.msea.2017.04.102
You do not currently have access to this content.