Abstract

This work reports results from a new finite element analysis (FEA)-based user programmable function (UPF) featuring true material constitutive behavior with proper algorithms for accurate stress analysis of swage autofrettage of high-strength thick-walled cylinders. This material model replicates an existing Bauschinger-effect characterization (BEC). This incorporates elastoplastic material behavior during loading. Reversed loading includes a reduced elastic modulus and nonlinear plasticity resulting from the Bauschinger effect (BE), both depending upon the maximum level of loading plastic strain. This case study identifies the difference in stress distributions based on two different material models, a bilinear kinematic hardening model, and the BEC model. Near-bore residual stresses for the BEC case are noteworthy and reported in detail, e.g., axial residual stress is tensile and hoop residual stress exhibits a distinct slope reversal, unlike hydraulic autofrettage. This indicates the possible need to re-assess the ASME pressure vessel code (correction for BE) regarding swage autofrettage.

References

1.
Shufen
,
R.
, and
Dixit
,
U. S.
,
2018
, “
A Review of Theoretical and Experimental Research on Various Autofrettage Processes
,”
ASME J. Pressure Vessel Technol.
,
140
(
5
), p.
050802
.10.1115/1.4039206
2.
Parker
,
A. P.
,
O'Hara
,
G. P.
, and
Underwood
,
J. H.
,
2003
, “
Hydraulic Versus Swage Autofrettage and Implications of the Bauschinger Effect
,”
ASME J. Pressure Vessel Technol.
,
125
(
3
), pp.
309
314
.10.1115/1.1593079
3.
Hu
,
Z.
,
2010
, “
Design and Modelling of Internally Pressurized Thick-Walled Cylinder
,”
Proceedings of the NDIA Conference
, Dallas, TX, May 17–20, Paper No. #9869.
4.
Hu
,
Z.
, and
Puttagunta
,
S.
,
2012
, “
Computer Modeling of Internal Pressure Autofrettage Process of a Thick-Walled Cylinder With the Bauschinger Effect
,”
Am. Trans. Eng. Appl. Sci.
,
1
(
2
), pp.
143
161
.https://www.tuengr.com/ATEAS/V01/143-161.pdf
5.
Kamal
,
S. M.
, and
Dixit
,
U. S.
,
2016
, “
A Comparative Study of Thermal and Hydraulic Autofrettage
,”
J. Mech. Sci. Technol.
,
30
(
6
), pp.
2483
2496
.10.1007/s12206-016-0508-8
6.
Davidson
,
T. E.
,
Barton
,
C. S.
,
Reiner
,
A. N.
, and
Kendall
,
D. P.
,
1962
, “
New Approach to the Autofrettage of High-Strength Cylinders
,”
Exp. Mech.
,
2
(
2
), pp.
33
40
.10.1007/BF02325691
7.
Hu
,
Z.
, and
Parker
,
A. P.
,
2019
, “
Swage Autofrettage Analysis—Current Status and Future Prospects
,”
Int. J. Pressure Vessels Piping
,
171
, pp.
233
241
.10.1016/j.ijpvp.2019.03.007
8.
Hu
,
Z.
, and
Penumarthy
,
C.
,
2014
, “
Computer Modeling and Optimization of Swage Autofrettage Process of a Thick-Walled Cylinder Implicating Bauschinger Effect
,”
Am. Trans. Eng. Appl. Sci.
,
3
(
1
), pp.
31
63
.https://tuengr.com/ATEAS/V03/0031M.pdf
9.
Jahed
,
H.
, and
Dubey
,
R. N.
,
1997
, “
An Axisymmetric Method of Elastic-Plastic Analysis Capable of Predicting Residual Stress Field
,”
ASME J. Pressure Vessel Technol.
,
119
(
3
), pp.
264
273
.10.1115/1.2842303
10.
Faghih
,
S.
,
Jahed
,
H.
, and
Behravesh
,
S. B.
,
2018
, “
Variable Material Properties (VMP) Approach: A Review on Twenty Years of Progress
,”
ASME J. Pressure Vessel Technol.
,
140
(
5
), p.
050803
.10.1115/1.4039068
11.
Parker
,
A. P.
,
Underwood
,
J. H.
, and
Kendall
,
D. P.
,
1999
, “
Bauschinger Effect Design Procedures for Autofrettaged Tubes Including Material Removal and Sachs' Method
,”
ASME J. Pressure Vessel Technol.
,
121
(
4
), pp.
430
437
.10.1115/1.2883726
12.
Parker
,
A. P.
,
2001
, “
Autofrettage of Open End Tubes—Pressures, Stresses, Strains and Code Comparisons
,”
ASME J. Pressure Vessel Technol.
,
123
(
3
), pp.
271
281
.10.1115/1.1359209
13.
ASME
,
2011
, “
ASME Boiler and Pressure Vessel Code, Section VIII, Division 3, Alternative Rules for Construction of High Pressure Vessels KD522.2 Correction for Reverse Yielding (Bauschinger Effect)
,” American Society of Mechanical Engineers, New York, p. 105.
14.
Troiano
,
E.
,
Parker
,
A. P.
,
Underwood
,
J. H.
, and
Mossey
,
C.
,
2003
, “
Experimental Data, Numerical Fit and Fatigue Life Calculations Relating to Bauschinger Effect in High Strength Armament Steels
,”
ASME J. Pressure Vessel Technol.
,
125
(
3
), pp.
330
334
.10.1115/1.1593072
15.
Parker
,
A. P.
,
Troiano
,
E.
,
Underwood
,
J. H.
, and
Mossey
,
C.
,
2003
, “
Characterization of Steels Using a Revised Kinematic Hardening Model Incorporating Bauschinger Effect
,”
ASME J. Pressure Vessel Technol.
,
125
(
3
), pp.
277
281
.10.1115/1.1593071
16.
Hu
,
Z.
,
Gibson
,
M. C.
, and
Parker
,
A. P.
,
2021
, “
Swage Autofrettage FEA Incorporating a User Function to Model Actual Bauschinger Effect
,”
Int. J. Pressure Vessels Piping
,
191
, p.
104372
.10.1016/j.ijpvp.2021.104372
17.
Hu
,
Z.
, and
Parker
,
A. P.
,
2021
, “
Implementation and Validation of True Material Constitutive Model for Accurate Modeling of Thick-Walled Cylinder Swage Autofrettage
,”
Int. J. Pressure Vessels Piping
,
191
, p.
104378
.10.1016/j.ijpvp.2021.104378
18.
Underwood
,
J. H.
,
deSwardt
,
R. R.
,
Venter
,
A. M.
,
Troiano
,
E.
,
Hyland
,
E. J.
, and
Parker
,
A. P.
,
2007
, “
Hill Stress Calculations for Autofrettaged Tubes Compared With Neutron Diffraction Residual Stresses and Measured Yield Pressure and Fatigue Life
,”
ASME
Paper No. PVP2007-26617, 10.1115/PVP2007-26617
19.
Troiano
,
E.
,
Parker
,
A. P.
, and
Underwood
,
J. H.
,
2004
, “
Mechanisms and Modeling Comparing HB7 and A723 High Strength Pressure Vessel Steels
,”
ASME J. Pressure Vessel Technol.
,
126
(
4
), pp.
473
477
.10.1115/1.1811108
20.
Gibson
,
M. C.
,
2008
, “
Determination of Residual Stress Distributions in Autofrettaged Thick-Walled Cylinders
,”
Ph.D. thesis
,
Engineering Systems Department, Cranfield University
,
Shrivenham, Swindon
.https://dspace.lib.cranfield.ac.uk/bitstream/handle/1826/2996/Determination%20of%20Residual%20Stress%20Distributions%20in%20Autofretta.pdf?sequence=3
21.
Farrahi
,
G. H.
,
Hosseinian
,
E.
, and
Assempour
,
A.
,
2009
, “
On the Material Modeling of the Autofrettaged Pressure Vessel Steels
,”
ASME J. Pressure Vessel Technol.
,
131
(
5
), p.
051403
.10.1115/1.3148084
22.
Hu
,
Z.
,
2019
, “
Design of Two-Pass Swage Autofrettage Processes of Thick-Walled Cylinders by Computer Modeling
,”
Proc. Inst. Mech. Eng. Part C J Mech. Eng. Sci.
,
233
(
4
), pp.
1312
1333
.10.1177/0954406218770221
23.
O'Hara
,
G. P.
,
1992
, “
Analysis of the Swage Autofrettage Process
,” U.S. Army ARDEC, Benét Laboratories, Watervliet Arsenal, New York, Report No. ARCCB-TR-92016.
24.
ANSYS
,
2019
, “ANSYS 19.2 User's Manual,” ANSYS, Canonsburg, PA.
You do not currently have access to this content.