Abstract

A numerical approach for transient computational fluid dynamics analyses of the autoclave curing process is presented, aimed at finding a trade-off between accuracy and computational cost that can make it industry-affordable. A steady-state, conjugated heat transfer analysis is carried out for the simultaneous simulation of solid and fluid regions to obtain a spatial distribution of the heat-transfer coefficient. This distribution and the curing temperature diagram are then used as boundary conditions for a transient heat-transfer simulation of the solid parts only. Results are compared to both experiments and coupled fluid–solid, steady-state conjugated heat-transfer simulations proving that the proposed methodology is accurate and less computationally expensive than a fully coupled, fluid–solid simulation.

References

1.
Dolkun
,
D.
,
Wang
,
H.
,
Wang
,
H.
, and
Ke
,
Y.
,
2021
, “
An Efficient Thermal Cure Profile Design Method for Autoclave Curing of Large Size Mold
,”
Int. J. Adv. Manuf. Technol.
,
114
(
7–8
), pp.
2499
2514
.10.1007/s00170-021-07015-4
2.
Dumont
,
F.
,
Fröhlingsdorf
,
W.
, and
Weimer
,
C.
,
2013
, “
Virtual Autoclave Implementation for Improved Composite Part Quality and Productivity
,”
CEAS Aeronaut. J.
,
4
(
3
), pp.
277
289
.10.1007/s13272-013-0072-1
3.
Loos
,
A. C.
, and
Springer
,
G. S.
,
1983
, “
Curing of Epoxy Matrix Composites
,”
J. Compos. Mater.
,
17
(
2
), pp.
135
169
.10.1177/002199838301700204
4.
Esposito
,
L.
,
Sorrentino
,
L.
,
Penta
,
F.
, and
Bellini
,
C.
,
2016
, “
Effect of Curing Overheating on Interlaminar Shear Strength and Its Modelling in Thick FRP Laminates
,”
Int. J. Adv. Manuf. Technol.
,
87
(
5–8
), pp.
2213
2220
.10.1007/s00170-016-8613-5
5.
Yi
,
S.
,
Hilton
,
H. H.
, and
Ahmad
,
M. F.
,
1997
, “
A Finite Element Approach for Cure Simulation of Thermosetting Matrix Composites
,”
Comput. Struct.
,
64
(
1–4
), pp.
383
388
.10.1016/S0045-7949(96)00156-3
6.
Bogetti
,
T. A.
, and
Gillespie
,
J. W.
,
1991
, “
Two-Dimensional Cure Simulation of Thick Thermosetting Composites
,”
J. Compos. Mater.
,
25
(
3
), pp.
239
273
.10.1177/002199839102500302
7.
Chen
,
F.
,
Zhan
,
L.
, and
Xu
,
Y.
,
2015
, “
Simulation of Mold Temperature Distribution in a Running Process Autoclave
,”
Iran. Polym. J.
,
24
(
11
), pp.
927
934
.10.1007/s13726-015-0384-6
8.
Li
,
H.
,
Evans
,
E. A.
, and
Wang
,
G.-X.
,
2005
, “
A Three-Dimensional Conjugate Model With Realistic Boundary Conditions for Flow and Heat Transfer in an Industry Scale Hydrothermal Autoclave
,”
Int. J. Heat Mass Transfer
,
48
(
25–26
), pp.
5166
5178
.10.1016/j.ijheatmasstransfer.2005.07.015
9.
Kluge
,
J. N. E.
,
Lundström
,
T.
,
Westerberg
,
L.
, and
Nyman
,
T.
,
2016
, “
Modelling Heat Transfer Inside an Autoclave: Effect of Radiation
,”
J. Reinf. Plast. Compos.
,
35
(
14
), pp.
1126
1142
.10.1177/0731684416641333
10.
Abou Msallem
,
Y.
,
Jacquemin
,
F.
,
Boyard
,
N.
,
Poitou
,
A.
,
Delaunay
,
D.
, and
Chatel
,
S.
,
2010
, “
Material Characterization and Residual Stresses Simulation During the Manufacturing Process of Epoxy Matrix Composites
,”
Compos. Part Appl. Sci. Manuf.
,
41
(
1
), pp.
108
115
.10.1016/j.compositesa.2009.09.025
11.
Cheung
,
A.
,
Yu
,
Y.
, and
Pochiraju
,
K.
,
2004
, “
Three-Dimensional Finite Element Simulation of Curing of Polymer Composites
,”
Finite Elem. Anal. Des.
,
40
(
8
), pp.
895
912
.10.1016/S0168-874X(03)00119-7
12.
Weber
,
T. A.
,
Arent
,
J.-C.
,
Münch
,
L.
,
Duhovic
,
M.
, and
Balvers
,
J. M.
,
2016
, “
A Fast Method for the Generation of Boundary Conditions for Thermal Autoclave Simulation
,”
Compos. Part Appl. Sci. Manuf.
,
88
, pp.
216
225
.10.1016/j.compositesa.2016.05.036
You do not currently have access to this content.