Abstract

A maintenance concept of performance-based maintenance (PBM) has been proposed by the current author. According to the PBM concept, inspection results are considered in determining the next inspection schedule. In this study, this concept was applied to fatigue degradation for stainless steel components in the pressurized water reactor (PWR) primary water environment. It is possible to estimate the fatigue life for the PWR water environment from that obtained in an air environment and the parameter Fen, which represents the ratio of the fatigue life in the air and PWR water environments. It was shown that the fatigue life prediction using Fen can be replaced by the crack growth analysis using the growth rate for the PWR water environment. Then, the crack growth was predicted for a thermal loading assuming the growth occurred in the PWR water environment. It was shown that the duration until the next inspection could be optimized based on the inspection results together with the crack growth curve. A longer operation before the inspection assured a longer duration until the next inspection.

References

1.
Gilman
,
T. D.
,
Alleshwaram
,
A.
, and
Satyan-Sharma
,
T.
,
2015
, “
Industry's First NRC Approved Appendix L Flaw Tolerance Evaluation to Manage Fatigue in a Surge Line
,”
ASME
Paper No. PVP2015-45194.10.1115/PVP2015-45194
2.
Nakamura
,
T.
,
Iwasaki
,
M.
, and
Asada
,
S.
,
2007
, “
Optimization of Environmental Fatigue Evaluation: Step 1
,”
ASME
Paper No. PVP2007-26247.10.1115/PVP2007-26247
3.
Asada
,
S.
,
Hirano
,
T.
, and
Sera
,
T.
,
2015
, “
Study on a New Design Fatigue Evaluation Method
,”
ASME
Paper No. PVP2015-45089.10.1115/PVP2015-45089
4.
Faidy
,
C.
,
2017
, “
Status of Fatigue Road Map and Remaining Uncertainties in Fatigue Life Evaluation
,”
Proceedings of 24th International Conference on Structural Mechanic in Reactor Technology
, Busan, Korea, Division D3, Aug. 20–25, Paper No. 03-11-05.http://www.lib.ncsu.edu/resolver/1840.20/35944
5.
Kamaya
,
M.
, and
Nakamura
,
T.
,
2015
, “
Fatigue Damage Management Based on Postulated Crack Growth Curve
,”
E-J. Adv. Maintain.
,
7–1
, pp.
43
49
.https://inis.iaea.org/search/search.aspx?orig_q=RN:47070681
6.
Murakami
,
Y.
, and
Miller
,
K. J.
,
2005
, “
What is Fatigue Damage? A View Point From the Observation of Low Cycle Fatigue Process
,”
Int. J. Fatigue
,
27
(
8
), pp.
991
1005
.10.1016/j.ijfatigue.2004.10.009
7.
Fatemi
,
A.
, and
Yang
,
L.
,
1998
, “
Cumulative Fatigue Damage and Life Prediction Theories: A Survey of the State of the Art for Homogeneous Materials
,”
Int. J. Fatigue
,
20
(
1
), pp.
9
34
.10.1016/S0142-1123(97)00081-9
8.
Kamaya
,
M.
, and
Kawakubo
,
M.
,
2015
, “
Loading Sequence Effect on Fatigue Life of Type 316 Stainless Steel
,”
Int. J. Fatigue
,
81
, pp.
10
20
.10.1016/j.ijfatigue.2015.07.009
9.
Kamaya
,
M.
,
2017
, “
Performance Based Maintenance Concept to Optimize Inspection Schedule
,”
E-J. Adv. Maintain.
,
9–2
, pp.
118
125
.https://inis.iaea.org/search/search.aspx?orig_q=RN:49074745
10.
Chopra
,
O. K.
, and
Stevens
,
G. L.
,
2018
, “
Effect of LWR Coolant Environments on the Fatigue Life of Reactor Materials
,” U.S. Nuclear Regulatory Commission, Washington, DC, Standard No.
NUREG/CR-6909 Rev.1
.https://www.nrc.gov/docs/ML0706/ML070660620.pdf
11.
Higuchi
,
M.
,
2008
, “
Comparison of Environmental Fatigue Evaluation Methods in LWR Water
,”
ASME
Paper No. PVP2008-61087.10.1115/PVP2008-61087
12.
Cipolla
,
R. C.
, and
Bamford
,
W. H.
,
2015
, “
Technical Basis for Code Case N-809 on Reference Fatigue Crack Growth Curves for Austenitic Stainless Steels in Pressurized Water Reactor Environments
,”
ASME
Paper No. PVP2015-45884.10.1115/PVP2015-45884
13.
Kamaya
,
M.
,
2013
, “
Environmental Effect on Fatigue Strength of Stainless Steel in PWR Primary Water – Role of Crack Growth Acceleration in Fatigue Life Reduction
,”
Int. J. Fatigue
,
55
, pp.
102
111
.10.1016/j.ijfatigue.2013.05.008
14.
Kamaya
,
M.
,
2015
, “
Low-Cycle Fatigue Crack Growth Prediction by Strain Intensity Factor
,”
Int. J. Fatigue
,
72
, pp.
80
89
.10.1016/j.ijfatigue.2014.11.002
15.
Kamaya
,
M.
,
2020
, “
Environmental Effect of PWR Primary Water on Fatigue Life of Stainless Steel (Influence of Loading Rate on Fatigue Life Reduction)
,”
Fatigue Fract. Eng. Mater. Struct.
,
43
(
11
), pp.
2571
2581
.10.1111/ffe.13277
16.
Kamaya
,
M.
, and
Kawakubo
,
M.
,
2012
, “
Strain-Based Modelling of Fatigue Crack Growth – An Experimental Approach for Stainless Steel
,”
Int. J. Fatigue
,
44
, pp.
131
140
.10.1016/j.ijfatigue.2012.05.006
17.
Maurel
,
V.
,
Rémy
,
L.
,
Dahmen
,
F.
, and
Haddar
,
N.
,
2009
, “
An Engineering Model for Low Cycle Fatigue Life Based on a Partition of Energy and Micro-Crack Growth
,”
Int. J. Fatigue
,
31
(
5
), pp.
952
961
.10.1016/j.ijfatigue.2008.09.004
18.
Carpinteri
,
A.
, and
Paggi
,
M.
,
2009
, “
A Unified Interpretation of the Power Laws in Fatigue and the Analytical Correlations Between Cyclic Properties of Engineering Materials
,”
Int. J. Fatigue
,
31
(
10
), pp.
1524
1531
.10.1016/j.ijfatigue.2009.04.014
19.
Asada
,
S.
,
Tsutsumi
,
K.
,
Fukuta
,
Y.
, and
Kanasaki
,
H.
,
2017
, “
Applicability of Hollow Cylindrical Specimens to Environmental Assisted Fatigue Tests
,”
ASME
Paper No. PVP2017-65514.10.1115/PVP2017-65514
20.
Kamaya
,
M.
,
2014
, “
Assessment of Thermal Fatigue Damage Caused by Local Fluid Temperature Fluctuation (Part I: Characteristics of Constraint and Stress Caused by Thermal Striation and Stratification)
,”
Nucl. Eng. Des.
,
268
, pp.
121
138
.10.1016/j.nucengdes.2013.12.041
21.
Grandemange
,
J. M.
,
Heliot
,
J.
,
Vagner
,
J.
,
Morel
,
A.
, and
Faidy
,
C.
,
1991
, “
Improvements on Fatigue Analysis Methods for the Design of Nuclear Components Subjected to the French RCC-M Code
,” Welding Research Council Bulletin, New York, Report No.
WRC-316
.10.1016/B978-1-4832-8430-9.50013-7
22.
Kamaya
,
M.
, and
Miyoshi
,
K.
,
2017
, “
Thermal Fatigue Damage Assessment at Mixing Tees (Elastic-Plastic Deformation Effect on Stress and Strain Fluctuations)
,”
Nucl. Eng. Des.
,
318
, pp.
202
212
.10.1016/j.nucengdes.2017.04.022
23.
Ranganath
,
S.
, and
Palm
,
N. A.
,
2017
, “
Alternative Approaches for ASME Code Simplified Elastic-Plastic Analysis
,”
ASME
Paper No. PVP2017-66240.10.1115/PVP2017-66240
24.
Shen
,
G.
, and
Glinka
,
G.
,
1991
, “
Weight Functions for a Surface Semi-Elliptical Crack in a Finite Thickness Plate
,”
Theor. Appl. Fract. Mech.
,
15
(
3
), pp.
247
255
.10.1016/0167-8442(91)90023-D
25.
Machida
,
H.
,
Itatani
,
M.
, and
Kamaya
,
M.
,
2014
, “
Revision of Flaw Evaluation Methods of Pipes Having a Circumferential Flaw in JSME Fitness-for-Service Codes
,”
ASME Paper No.
PVP2014-29053.
26.
Kamaya
,
M.
,
2017
, “
Flaw Tolerance Assessment for Low-Cycle Fatigue of Stainless Steel
,”
ASME J. Pressure Vessel Technol.
,
139
(
4
), p.
041405
.10.1115/1.4036141
You do not currently have access to this content.