Abstract

This paper proposes an analytical buckling load formula for a cylindrical shell subjected to local axial compression for the first time, which is achieved by a carefully constructed load description and perturbation procedure. Local axial load is described by introducing an arctangent function first. Then, the analytical solutions of local buckling load coefficients and buckling modes for a locally compressed shell are derived after solving governing differential equations by the perturbation method. For validation, using the presented analytical buckling modes, the Galerkin method is applied to obtain a numerical results, which is an infinite order determinant about local buckling load coefficient. Comparative calculation results show that local buckling load coefficients by the analytical formula are in perfect agreement with numerical ones by the Galerkin method and known results in the literature. Therefore, the validity and accuracy of the presented formula are verified. Engineering application of the analytical formula is also discussed to evaluate local buckling loads of thin-walled cylindrical shell structures such as silos, pressure vessels, and large storage tanks.

References

1.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
,
1961
,
Theory of Elastic Stability
, 2nd ed.,
McGraw-Hill International Book Company
,
New York
.
2.
Ellinas
,
C. P.
, and
Croll
,
J. G. A.
,
1986
, “
Elastic-Plastic Buckling Design of Cylindrical Shells Subject to Combined Axial Compression and Pressure Loading
,”
Int. J. Solids Struct.
,
22
(
9
), pp.
1007
1017
.10.1016/0020-7683(86)90033-8
3.
Li
,
Y. W.
,
Elishakoff
,
I.
, and
Starnes
,
J. H.
,
1995
, “
Axial Buckling of Composite Cylindrical Shells With Periodic Thickness Variation
,”
Comput. Struct.
,
56
(
1
), pp.
65
74
.10.1016/0045-7949(94)00527-A
4.
Catellani
,
G.
,
Pellicano
,
F.
,
Dall'Asta
,
D.
, and
Amabili
,
M.
,
2004
, “
Parametric Instability of a Circular Cylindrical Shell With Geometric Imperfections
,”
Comput. Struct.
,
82
(
31–32
), pp.
2635
2645
.10.1016/j.compstruc.2004.07.006
5.
Shen
,
H. S.
,
2008
, “
Boundary Layer Theory for the Buckling and Postbuckling of an Anisotropic Laminated Cylindrical Shell. Part I: Prediction Under Axial Compression
,”
Compos. Struct.
,
82
(
3
), pp.
346
361
.10.1016/j.compstruct.2007.01.024
6.
Chen
,
Z. P.
,
Yang
,
L. C.
,
Cao
,
G. W.
, and
Guo
,
W. J.
,
2012
, “
Buckling of the Axially Compressed Cylindrical Shells With Arbitrary Axisymmetric Thickness Variation
,”
Thin-Walled Struct.
,
60
, pp.
38
45
.10.1016/j.tws.2012.07.015
7.
Cao
,
G. W.
,
Chen
,
Z. P.
,
Yang
,
L. C.
,
Fan
,
H. G.
, and
Zhou
,
F.
,
2015
, “
Analytical Study on the Buckling of Cylindrical Shells With Arbitrary Thickness Imperfections Under Axial Compression
,”
ASME J. Pressure Vessel Technol.
,
137
(
1
), pp.
1
9
.10.1115/1.4027179
8.
Ifayefunmi
,
O.
, and
Błachut
,
J.
,
2018
, “
Imperfection Sensitivity: A Review of Buckling Behavior of Cones, Cylinders, and Domes
,”
ASME J. Pressure Vessel Technol.
,
140
(
5
), p.
050801
.10.1115/1.4039695
9.
Wagner
,
H.
,
Sosa
,
E.
,
Hühne
,
C.
,
Ludwig
,
T.
, and
Croll
,
J.
,
2019
, “
Robust Design of Imperfection Sensitive Thin-Walled Shells Under Axial Compression, Bending or External Pressure
,”
Int. J. Mech. Sci.
,
156
, pp.
205
220
.10.1016/j.ijmecsci.2019.02.047
10.
Libai
,
A.
, and
Durban
,
D.
,
1973
, “
A Method for Approximate Stability Analysis and Its Application to Circular Cylindrical Shells Under Circumferentially Varying Edge Loads
,”
ASME J. Appl. Mech.
,
40
(
4
), pp.
971
976
.10.1115/1.3423196
11.
Durban
,
D.
,
1977
, “
Instability of an Elastic Circular Plate Subjected to Nonuniform Loads
,”
AIAA J.
,
15
(
3
), pp.
360
365
.10.2514/3.7329
12.
Libai
,
A.
, and
Durban
,
D.
,
1977
, “
Buckling of Cylindrical Shells Subjected to Nonuniform Axial Loads
,”
ASME J. Appl. Mech.
,
44
(
4
), pp.
714
720
.10.1115/1.3424162
13.
Durban
,
D.
, and
Ore
,
E.
,
1999
, “
Plastic Buckling of Circular Cylindrical Shells Under Nonuniform Axial Loads
,”
ASME J. Appl. Mech.
,
66
(
2
), pp.
374
379
.10.1115/1.2791059
14.
Mahboubi Nasrekani
,
F.
, and
Eipakchi
,
H.
,
2015
, “
Nonlinear Analysis of Cylindrical Shells With Varying Thickness and Moderately Large Deformation Under Non-Uniform Compressive Pressure Using First Order Shear Deformation Theory
,”
J. Eng. Mech.
,
141
(
5
), p.
04014153
.10.1061/(ASCE)EM.1943-7889.0000875
15.
Greiner
,
R.
, and
Guggenberger
,
W.
,
1998
, “
Buckling Behaviour of Axially Loaded Steel Cylinders on Local Supports: With and Without Internal Pressure
,”
Thin-Walled Struct.
,
31
(
1–3
), pp.
159
167
.10.1016/S0263-8231(98)00011-1
16.
Song
,
C. Y.
,
Teng
,
J. G.
, and
Rotter
,
J. M.
,
2004
, “
Imperfection Sensitivity of Thin Elastic Cylindrical Shells Subject to Partial Axial Compression
,”
Int. J. Solids Struct.
,
41
(
24–25
), pp.
7155
7180
.10.1016/j.ijsolstr.2004.05.040
17.
Rotter
,
J. M.
,
Cai
,
M.
, and
Holst
,
J. M. F. G.
,
2011
, “
Buckling of Thin Cylindrical Shells Under Locally Elevated Compressive Stresses
,”
ASME J. Pressure Vessel Technol.
,
133
(
1
), p.
011204
.10.1115/1.4002771
18.
Dey
,
T.
, and
Ramachandra
,
L. S.
,
2014
, “
Nonlinear Stability Analysis of Laminated Composite Simply Supported Circular Cylindrical Shells Subjected to Partial Axial Loading
,”
J. Eng. Mech.
,
140
(
8
), p.
04014058
.10.1061/(ASCE)EM.1943-7889.0000764
19.
Dey
,
T.
, and
Ramachandra
,
L. S.
,
2015
, “
Dynamic Stability of Simply Supported Composite Cylindrical Shells Under Partial Axial Loading
,”
J. Sound Vib.
,
353
, pp.
272
291
.10.1016/j.jsv.2015.05.021
20.
Evkin
,
A.
,
Krasovsky
,
V.
,
Lykhachova
,
O.
, and
Marchenko
,
V.
,
2019
, “
Local Buckling of Axially Compressed Cylindrical Shells With Different Boundary Conditions
,”
Thin-Walled Struct.
,
141
, pp.
374
388
.10.1016/j.tws.2019.04.039
21.
Wagner
,
H. N. R.
,
Hühne
,
C.
, and
Janssen
,
M.
,
2020
, “
Buckling of Cylindrical Shells Under Axial Compression With Loading Imperfections: An Experimental and Numerical Campaign on Low Knockdown Factors
,”
Thin-Walled Struct.
,
151
, p.
106764
.10.1016/j.tws.2020.106764
22.
API,
2005
, “
Welded Steel tanks for Oil Storage
,”
American Petroleum Institute
,
Washington, DC
, Standard No. API 650.
23.
JIS,
1995
, “
Welded Steel Tank for Oil Storage
,”
Japanese Standards Association
,
Tokyo
, Japan, Standard No. JIS B 8501.
You do not currently have access to this content.