Abstract

This paper is concerned with experimental analyses on the vibration behaviors of a horizontal pipe containing gas–liquid two-phase flow with different flow patterns. The effects of flow patterns and superficial velocities on pressure fluctuations and structural responses are evaluated in detail. Numerical simulations on the fluid–structure interactions within the pipe are carried out using the volume of fluid method and the finite element method. A strongly partitioned coupling method is adopted to ensure the compatibility and equilibrium interface conditions between the fluid and the elastic pipe. The accuracy of the numerical solutions is confirmed by comparing with experimental results. It is found that the fluctuation frequency of the pressure fluctuations of the two-phase flow ranges from 0 Hz to 5 Hz. The standard deviation (STD) value of the pressure fluctuation of the two-phase flow increases with an increase in the superficial liquid velocity, and the maximum magnitude appears in slug flows. The vibration responses of the pipe exhibit strong dependence on the momentum flux of the two-phase flow, which mainly excites the fundamental flexural vibration mode of the pipe. The magnitude of vertical vibration response of the pipe is equal to that of the lateral vibration response, and the vibration response measured at the middle of the pipe does not contain the second-order operating mode. Moreover, the STD value of the structural responses of the pipe increases proportionally with an increase in the gas flowrate, while the predominant vibration frequency of the pipe slightly increases.

References

1.
Monette
,
C.
, and
Pettigrew
,
M.
,
2004
, “
Fluid-Elastic Instability of Flexible Tubes Subjected to Two-Phase Internal Flow
,”
J. Fluids Struct.
,
19
(
7
), pp.
943
956
.10.1016/j.jfluidstructs.2004.06.003
2.
Riverin
,
J. L.
,
de Langre
,
E.
, and
Pettigrew
,
M. J.
,
2006
, “
Fluctuating Forces Caused by Internal Two-Phase Flow on Bends and Tees
,”
J. Sound Vib.
,
298
(
4–5
), pp.
1088
1098
.10.1016/j.jsv.2006.06.039
3.
Miwa
,
S.
,
Hibiki
,
T.
, and
Mori
,
M.
,
2015
, “
Two-Phase Flow Induced Vibration in Piping Systems
,”
Prog. Nucl. Energy
,
78
, pp.
270
284
.10.1016/j.pnucene.2014.10.003
4.
Bossio V
,
B. M.
,
Blanco A
,
A. J.
, and
Casanova M
,
E. L.
,
2014
, “
Numerical Modelling of the Dynamical Interaction Between Slug Flow and Vortex Induced Vibration in Horizontal Submarine Pipelines
,”
ASME J. Offshore Mech. Arct. Eng.
,
136
(
4
), p.
041803
.10.1115/1.4028027
5.
Thaker
,
J.
, and
Banerjee
,
J.
,
2015
, “
Characterization of Two-Phase Slug Flow Sub-Regimes Using Flow Visualization
,”
J. Pet. Sci. Eng.
,
135
, pp.
561
576
.10.1016/j.petrol.2015.10.018
6.
Zhu
,
H.
,
Lin
,
P.
, and
Yao
,
J.
,
2016
, “
An Experimental Investigation of Vortex-Induced Vibration of a Curved Flexible Pipe in Shear Flows
,”
Ocean Eng.
,
121
, pp.
62
75
.10.1016/j.oceaneng.2016.05.025
7.
Hara
,
F.
,
1977
, “
Two-Phase Flow Induced Vibrations in a Horizontal Piping System
,”
Bull. JSME
,
20
(
142
), pp.
419
427
.10.1299/jsme1958.20.419
8.
An
,
C.
, and
Su
,
J.
,
2015
, “
Dynamic Behavior of Pipes Conveying Gas-Liquid Two-Phase Flow
,”
Nucl. Eng. Des.
,
292
, pp.
204
212
.10.1016/j.nucengdes.2015.06.012
9.
Al-Hashimy
,
Z. I.
,
Al-Kayiem
,
H. H.
, and
Time
,
R. W.
,
2016
, “
Experimental Investigation on the Vibration Induced by Slug Flow in Horizontal Pipe
,”
ARPN J. Eng. Appl. Sci.
,
11
(
20
), pp.
12134
12139
.https://www.researchgate.net/publication/306286032_Experimental_investigation_on_the_vibration_induced_by_slug_flow_in_horizontal_pipe
10.
Ortiz-Vidal
,
L. E.
,
Mureithi
,
N. W.
, and
Rodriguez
,
O. M. H.
,
2017
, “
Vibration Response of a Pipe Subjected to Two-Phase Flow: Analytical Formulations and Experiments
,”
Nucl. Eng. Des.
,
313
, pp.
214
224
.10.1016/j.nucengdes.2016.12.020
11.
Wang
,
L.
,
Yang
,
Y.
,
Liu
,
C.
,
Li
,
Y.
, and
Hu
,
Q.
,
2018
, “
Numerical Investigation of Dynamic Response of a Pipeline-Riser System Caused by Severe Slugging Flow
,”
Int. J. Pressure Vessels Piping
,
159
, pp.
15
27
.10.1016/j.ijpvp.2017.11.002
12.
Zhang
,
M.
, and
Xu
,
J.
,
2010
, “
Effect of Internal Bubbly Flow on Pipe Vibrations
,”
Sci. China Technol. Sci.
,
53
(
2
), pp.
423
428
.10.1007/s11431-009-0405-9
13.
Geng
,
Y.
,
Ren
,
F.
, and
Hua
,
C.
,
2012
, “
An Auxiliary Measuring Technology of Wet Gas Flow Based on the Vibration Signals of the Pipe
,”
Flow Meas. Instrum.
,
27
, pp.
113
119
.10.1016/j.flowmeasinst.2012.04.010
14.
Cargnelutti
,
M. F.
,
Belfroid
,
S. P. C.
,
Schiferli
,
W.
, and
Van Osch
,
M.
,
2010
, “
Multiphase Fluid Structure Interaction in Bends and T-Joints
,”
ASME
Paper No. PVP2010-25696.10.1115/PVP2010-25696
15.
Tay
,
B. L.
, and
Thorpe
,
R. B.
,
2004
, “
Effects of Liquid Physical Properties on the Forces Acting on a Pipe Bend in Gas-Liquid Slug Flow
,”
Chem. Eng. Res. Des.
,
82
(
3
), pp.
344
356
.10.1205/026387604322870453
16.
Hossain
,
M.
,
Chinenye-Kanu
,
N. M.
,
Droubi
,
G. M.
, and
Islam
,
S. Z.
,
2019
, “
Investigation of Slug-Churn Flow Induced Transient Excitation Forces at Pipe Bend
,”
J. Fluids Struct.
,
91
, p.
102733
.10.1016/j.jfluidstructs.2019.102733
17.
Riverin
,
J. L.
, and
Pettigrew
,
M. J.
,
2007
, “
Vibration Excitation Forces Due to Two-Phase Flow in Piping Elements
,”
ASME J. Pressure Vessel Technol.
,
129
(
1
), pp.
7
13
.10.1115/1.2388994
18.
Liu
,
Y.
,
Miwa
,
S.
,
Hibiki
,
T.
,
Ishii
,
M.
,
Morita
,
H.
,
Kondoh
,
Y.
, and
Tanimoto
,
K.
,
2012
, “
Experimental Study of Internal Two-Phase Flow Induced Fluctuating Force on a 90° Elbow
,”
Chem. Eng. Sci.
,
76
, pp.
173
187
.10.1016/j.ces.2012.04.021
19.
Wang
,
L.
,
Yang
,
Y.
,
Li
,
Y.
, and
Wang
,
Y.
,
2018
, “
Dynamic Behaviors of Horizontal Gas-Liquid Pipes Subjected to Hydrodynamic Slug Flow: Modeling and Experiments
,”
Int. J. Pressure Vessels Piping
,
161
, pp.
50
57
.10.1016/j.ijpvp.2018.02.005
20.
Giraudeau
,
M.
,
Mureithi
,
N. W.
, and
Pettigrew
,
M. J.
,
2013
, “
Two-Phase Flow-Induced Forces on Piping in Vertical Upward Flow: Excitation Mechanisms and Correlation Models
,”
ASME J. Pressure Vessel Technol.
,
135
(
3
), p.
030907
.10.1115/1.4024210
21.
Miwa
,
S.
,
Hibiki
,
T.
, and
Mori
,
M.
,
2016
, “
Analysis of Flow-Induced Vibration Due to Stratified Wavy Two-Phase Flow
,”
ASME J. Fluids Eng.
,
138
(
9
), p.
091302
.10.1115/1.4033371
22.
Moffat
,
R. J.
,
1982
, “
Contributions to the Theory of Single-Sample Uncertainty Analysis
,”
ASME J. Fluids Eng.
,
104
(
2
), pp.
250
258
.10.1115/1.3241818
23.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.10.1016/0021-9991(81)90145-5
24.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
25.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
15
(
2
), pp.
301
314
.10.1016/0017-9310(72)90076-2
26.
Issa
,
R. I.
,
1986
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.10.1016/0021-9991(86)90099-9
27.
Mansour
,
M.
,
Landage
,
A.
,
Khot
,
P.
,
Nigam
,
K. D. P.
,
Janiga
,
G.
,
Thévenin
,
D.
, and
Zähringer
,
K.
,
2020
, “
Numerical Study of Gas-Liquid Two-Phase Flow Regimes for Upward Flow in a Helical Pipe
,”
Ind. Eng. Chem. Res.
,
59
(
9
), pp.
3873
3886
.10.1021/acs.iecr.9b05268
28.
Newmark
,
N. M.
,
1959
, “
A Method of Computation for Structural Dynamics
,”
J. Eng. Mech.
,
85
(
3
), pp.
67
94
.10.1061/JMCEA3.0000098
29.
Hewitt
,
S.
,
Margetts
,
L.
,
Pankaj
,
P.
,
Levrero
,
F.
, and
Revell
,
A.
,
2019
, “
OpenFPCI: A Parallel Fluid-Structure Interaction Framework
,”
Comput. Phys. Commun.
,
244
, pp.
469
482
.10.1016/j.cpc.2019.05.016
30.
Worosz
,
T.
,
Kim
,
S.
,
Talley
,
J. D.
, and
Buchanan
,
J. R.
,
2015
, “
Characterization of Horizontal Air-Water Two-Phase Flow in a Round Pipe Part I: Flow Visualization
,”
Int. J. Multiphase Flow
,
76
, pp.
212
222
.10.1016/j.ijmultiphaseflow.2015.06.011
You do not currently have access to this content.