Abstract

Due to the influence of the working environment and transport medium, corrosion defects inevitably occur on the inner and outer walls of the pipelines. Authors have often studied the effect of internal and external corrosion defects on pipe burst pressure based on finite element method and experimental data, respectively. It is not clear whether single-point internal corrosion defects and single-point external corrosion defects are consistent in burst pressure of pipelines. For this reason, this paper establishes the internal and external corrosion defect model of the pipe with the same geometry and material properties based on finite element method. In addition, the burst pressures of pipelines with internal corrosion defects are compared with that with external corrosion defects. Finally, a burst pressure equation is proposed for the pipelines with internal corrosion defects and external corrosion defects. It was found that the burst pressure of the pipelines with internal and external corrosion defects was consistent. It provides a new idea for the establishment of a unified model to predict the burst strength of corroded pipelines.

References

1.
Chen
,
Y.
,
Zhang
,
H.
,
Zhang
,
J.
,
Li
,
X.
, and
Zhou
,
J.
,
2015
, “
Failure Analysis of High Strength Pipeline With Single and Multiple Corrosions
,”
Mater. Des.
,
67
, pp.
552
557
.10.1016/j.matdes.2014.10.088
2.
Soomro
,
A. A.
,
Mokhtar
,
A. A.
,
Kurnia
,
J. C.
,
Lashari
,
N.
,
Lu
,
H.
, and
Sambo
,
C.
,
2022
, “
Integrity Assessment of Corroded Oil and Gas Pipelines Using Machine Learning: A Systematic Review
,”
Eng. Failure Anal.
,
131
, p.
105810
.10.1016/j.engfailanal.2021.105810
3.
Chen
,
X.-L.
,
Lin
,
W.-D.
,
Liu
,
C.-X.
,
Yang
,
F.-Q.
,
Guo
,
Y.
,
Li
,
X.
,
Yuan
,
S.-Q.
, and
Reniers
,
G.
,
2023
, “
An Integrated EDIB Model for Probabilistic Risk Analysis of Natural Gas Pipeline Leakage Accidents
,”
J. Loss Prev. Process Ind.
,
83
, p.
105027
.10.1016/j.jlp.2023.105027
4.
Lam
,
C.
, and
Zhou
,
W.
,
2016
, “
Statistical Analyses of Incidents on Onshore Gas Transmission Pipelines Based on PHMSA Database
,”
Int. J. Pressure Vessels Piping
,
145
, pp.
29
40
.10.1016/j.ijpvp.2016.06.003
5.
Stephens
,
D. R.
, and
Leis
,
B. N.
,
1999
, “
Development of Alternative Criterion for Residual strength of Corrosion Defects in Moderate to High Toughness Pipe
,”
ASME
Paper No. IPC2000-192.10.1115/IPC2000-192
6.
Institute B M.
,
1989
, “
A Modified Criterion for Evaluating the Remaining Strength of Corroded Pipe
,”
John F K P H V
,
Columbus, OH
, Report No.
PR-3-805
.10.55274/R0011347
7.
O'Grady
,
T. J. H. D. T. K.
,
1992
, “
Pressure Calculation for Corroded Pipe Developed
,”
Oil Gas J.
,
90
(
42
), pp.
84
89
.https://www.osti.gov/biblio/7026170
8.
DNV-RP-F101, 1999, “Corroded Pipelines,” Det Norske Veritas, Høvik, Norway.
9.
Sun
,
M.
,
Zhao
,
H.
,
Li
,
X.
,
Liu
,
J.
, and
Xu
,
Z.
,
2021
, “
New Evaluation Method of Failure Pressure of Steel Pipeline With Irregular-Shaped Defect
,”
Appl. Ocean Res.
,
110
, p.
102601
.10.1016/j.apor.2021.102601
10.
Shuai
,
Y.
,
Zhang
,
X.
,
Feng
,
C.
,
Han
,
J.
, and
Cheng
,
Y. F.
,
2022
, “
A Novel Model for Prediction of Burst Capacity of Corroded Pipelines Subjected to Combined Loads of Bending Moment and Axial Compression
,”
Int. J. Pressure Vessels Piping
,
196
, p.
104621
.10.1016/j.ijpvp.2022.104621
11.
Jiang
,
F.
, and
Zhao
,
E.
,
2022
, “
An Integrated Risk Analysis Model for Corroded Pipelines Subjected to Internal Pressures: Considering the Interacting Effects
,”
Ocean Eng.
,
247
, p.
110683
.10.1016/j.oceaneng.2022.110683
12.
Deng, K.,
Yang, P., Liu, B., Lin, Y. and Wang, J.
,
2021
, “
Through-Wall Yield Ductile Burst Pressure of High-Grade Steel Tube and Casing With and Without Corroded Defect
,”
Mar. Struct.
,
76
, p.
102902
.10.1016/j.marstruc.2020.102902
13.
Bhardwaj
,
U.
,
Teixeira
,
A.
, and
Soares
,
G. C.
,
2024
, “
Calibration of Burst Strength Models of Corroded Pipelines Using the Hierarchical Bayesian Method
,”
Struct. Saf.
,
108
, p.
102444
.10.1016/j.strusafe.2024.102444
14.
Zhang
,
S. H.
,
Liu
,
J. R.
, and
Liu
,
X. Y.
,
2021
, “
A Weighted Unification Yield Criterion and Its Application in Analysis of Burst Pressure of Pipe Elbow
,”
Int. J. Pressure Vessels Piping
,
194
, p.
104561
.10.1016/j.ijpvp.2021.104561
15.
Lu
,
H.
,
Xu
,
Z.-D.
,
Iseley
,
T.
, and
Matthews
,
J. C.
,
2021
, “
Novel Data-Driven Framework for Predicting Residual Strength of Corroded Pipelines
,”
J. Pipeline Syst. Eng. Pract.
,
12
(
4
), p.
04021045
.10.1061/(ASCE)PS.1949-1204.0000587
16.
Chen
,
Y.
,
Hou
,
F.
,
Dong
,
S.
,
Guo
,
L.
,
Xia
,
T.
, and
He
,
G.
,
2022
, “
Reliability Evaluation of Corroded Pipeline Under Combined Loadings Based on Back Propagation Neural Network Method
,”
Ocean Eng.
,
262
, p.
111910
.10.1016/j.oceaneng.2022.111910
17.
Phan
,
H. C.
, and
Dhar
,
A. S.
,
2021
, “
Predicting Pipeline Burst Pressures With Machine Learning Models
,”
Int. J. Pressure Vessels Piping
,
191
, p.
104384
.10.1016/j.ijpvp.2021.104384
18.
Su
,
Y.
,
Li
,
J.
,
Yu
,
B.
,
Zhao
,
Y.
, and
Yao
,
J.
,
2021
, “
Fast and Accurate Prediction of Failure Pressure of Oil and Gas Defective Pipelines Using the Deep Learning Model
,”
Reliab. Eng. Syst. Saf.
,
216
, p.
108016
.10.1016/j.ress.2021.108016
19.
Chen
,
Z.
,
Li
,
X.
,
Wang
,
W.
,
Li
,
Y.
,
Shi
,
L.
, and
Li
,
Y.
,
2023
, “
Residual Strength Prediction of Corroded Pipelines Using Multilayer Perceptron and Modified Feedforward Neural Network
,”
Reliab. Eng. Syst. Saf.
,
231
, p.
108980
.10.1016/j.ress.2022.108980
20.
Zhou
,
R.
,
Gu
,
X.
, and
Luo
,
X.
,
2023
, “
Residual Strength Prediction of X80 Steel Pipelines Containing Group Corrosion Defects
,”
Ocean Eng.
,
274
, p.
114077
.10.1016/j.oceaneng.2023.114077
21.
Sun
,
M.
,
Fang
,
H.
,
Miao
,
Y.
,
Zhao
,
H.
, and
Li
,
X.
,
2023
, “
Experimental Study on Strain and Failure Location of Interacting Defects in Pipeline
,”
Eng. Failure Anal.
,
148
, p.
107119
.10.1016/j.engfailanal.2023.107119
22.
Wang
,
W.
,
Zhang
,
Y.
,
Shuai
,
J.
,
Shuai
,
Y.
,
Shi
,
L.
, and
Lv
,
Z.-Y.
,
2023
, “
Mechanical Synergistic Interaction Between Adjacent Corrosion Defects and Its Effect on Pipeline Failure
,”
Pet. Sci.
,
20
(
4
), pp.
2452
2467
.10.1016/j.petsci.2023.02.026
23.
Abaqus, 2016, “Abaqus Analysis User’s Manual, Version 2016,” Dassault Systemes Simulia Corp, Johnston, RI.
24.
Oh
,
C.-K.
,
Kim
,
Y.-J.
,
Baek
,
J.-H.
,
Kim
,
Y.-P.
, and
Kim
,
W.-S.
,
2007
, “
Ductile Failure Analysis of API X65 Pipes With Notch-Type Defects Using a Local Fracture Criterion
,”
Int. J. Pressure Vessels Piping
,
84
(
8
), pp.
512
525
.10.1016/j.ijpvp.2007.03.002
25.
Chouchaoui
,
B. A.
, and
Pick
,
R. J.
,
1994
, “
Behaviour of Circumferentially Aligned Corrosion Pits
,”
Int. Journal Pressure Vessels Piping
,
57
(
2
), pp.
187
200
.10.1016/0308-0161(94)90052-3
26.
Mok
,
D. H. B.
,
Pick
,
R. J.
,
Glover
,
A. G.
, and
Hoff
,
R.
,
1991
, “
Bursting of Line Pipe With Long External Corrosion
,”
Int. J. Pressure Vessels Piping
,
46
(
2
), pp.
195
216
.10.1016/0308-0161(91)90015-T
27.
Chen
,
Z.
,
Yan
,
S.
,
Ye
,
H.
,
Deng
,
Z.
,
Shen
,
X.
, and
Jin
,
Z.
,
2017
, “
Double Circular Arc Model Based on Average Shear Stress Yield Criterion and Its Application in the Corroded Pipe Burst
,”
J. Pet. Sci. Eng.
,
149
, pp.
515
521
.10.1016/j.petrol.2016.11.001
You do not currently have access to this content.