Abstract

A continuously undulating pipeline results in the accumulation of air at high points and liquid at low points during commissioning, hindering the process, and impacting oil product quality. Cavitation may occur at the crossover point, especially for high saturated vapor pressure oils, potentially causing water strikes and pipeline damage. This study focuses on the BZ pipeline, transporting high saturated vapor pressure condensate in a varied terrain. It proposes the “oil injection after water isolation section” commissioning method and develops 20 commissioning schemes based on site conditions. A multiphase flow simulation model investigates the effects of pipeline flowrate and water injection length on start pressure, high point liquid retention, crossover point pressure, low point liquid retention, and liquid accumulation time. A preferred commissioning scheme suggests a pipeline flowrate of 192 m3/h–240 m3/h and a water injection length of 133 km. Commissioning schematics and operation schedules are devised accordingly. Optimization shows that increasing pipeline flowrate reduces low point fluid accumulation time. For downhill pipeline sections, extending water injection length does not enhance liquid retention at crossover points or improve pipeline exhaust, risking high pressure at low points. During oil–water injection transitions, maintaining a high delivery rate minimizes pressure fluctuations due to density differences. Following this scheme, pig wear along the BZ pipeline was even, and crossover point 2# and valve chamber No. 10 showed good exhaust conditions. Optimizing key parameters and commissioning scheme formulation effectively guide BZ condensate pipeline commissioning, ensuring safety.

References

1.
Timmermans
,
J.
,
Arjen
,
M.
, and
Sakir
,
E.
,
2014
, “
South Stream Deepwater Pipeline System: A Case for Waiving the Hydrotest
,”
ASME
Paper No. OMAE2014-24638.10.1115/OMAE2014-24638
2.
Falck
,
C.
, and
Jarleiv
,
M.
,
2006
, “
Commissioning 8000 km of Subsea Pipelines
,”
Int. J. Offshore Polar Eng.
,
16
(
1
), pp. 41–47, Paper No. ISOPE-06-16-1-041.https://onepetro.org/IJOPE/article-abstract/28856/Commissioning-8000-Km-of-Subsea-Pipelines?redirectedFrom=fulltext
3.
Jarleiv
,
M.
,
Falck
,
C.
, and
Philip
,
B.
,
2001
, “
Åsgard Gas Transport System: Pre-Commissioning and Commissioning
,”
ISOPE International Ocean and Polar Engineering Conference
,
Stavanger, Norway
, June 17–22, Paper No. ISOPE-I-01-128.https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE01/All-ISOPE01/ISOPE-I-01-128/7906
4.
Mappus
,
B. E.
, and
Torstrick
,
A. G.
,
2007
, “
Pipeline Hydrotesting, Dewatering, and Commissioning
,”
Offshore Technology Conference
,
Houston, TX
, Apr. 30–May 3, Paper No. OTC-19062-MS.10.4043/19062-MS
5.
Chaudhuri
,
J.
,
Liu
,
P.
,
Meijer
,
A.
, and
Dixon
,
P.
,
2020
, “
Optimization of Ultra-Deepwater Pipeline Design, Construction and Pre-Commissioning
,”
ISOPE International Ocean and Polar Engineering Conference
,
Shanghai, China
, Oct. 11–16, Paper No. ISOPE-I-20-2145.https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE20/All-ISOPE20/ISOPE-I-20-2145/446620
6.
Zhu
,
Y. M.
,
Fan
,
H. P.
,
Wang
,
H.
, and
Chen
,
D.
,
2016
, “
Commissioning of Jiudong Branch Pipeline in Western Crude Oil Pipeline of China
,”
J. Oil Gas Technol.
,
38
(
4
), pp.
110
115
.10.12677/JOGT.2016.384044
7.
Russell
,
D.
,
2005
, “
Pigging in Pipeline Pre-Commissioning
,”
Pigging Prod. Serv. Assoc.
,
9
.https://www.ppsa-online.com/papers/2005-Aberdeen-2-Russell.pdf
8.
Ferioli
,
J.
, and
Fernando
,
M.
,
2004
, “
Innovative Approach for a Pipeline Pre-Operation
,”
ASME
Paper No. IPC2004-0495.10.1115/IPC2004-0495
9.
Apollonio
,
C.
,
Balacco
,
G.
,
Fontana
,
N.
,
Giugni
,
M.
,
Marini
,
G.
, and
Piccinni
,
A.
,
2016
, “
Hydraulic Transients Caused by Air Expulsion During Rapid Filling of Undulating Pipelines
,”
Water
,
8
(
1
), p.
25
.10.3390/w8010025
10.
Zhang
,
X.
,
Yu
,
B.
,
Wang
,
Y.
,
Xie
,
J.
,
Qiu
,
D.
, and
Sun
,
X.
,
2014
, “
Numerical Study on the Commissioning Charge-Up Process of Horizontal Pipeline With Entrapped Air Pockets
,”
Adv. Mech. Eng.
,
6
, p.
838926
.10.1155/2014/838926
11.
Pothof
,
I. W. M.
, and
Clemens
,
F. H. L. R.
,
2011
, “
Experimental Study of Air–Water Flow in Downward Sloping Pipes
,”
Int. J. Multiphase Flow
,
37
(
3
), pp.
278
292
.10.1016/j.ijmultiphaseflow.2010.10.006
12.
Bergant
,
A.
,
Simpson
,
A. R.
, and
Tijsseling
,
A. S.
,
2006
, “
Water Hammer With Column Separation: A Historical Review
,”
J. Fluids Struct.
,
22
(
2
), pp.
135
171
.10.1016/j.jfluidstructs.2005.08.008
13.
Zhao
,
L.
,
Yang
,
Y.
,
Wang
,
T.
,
Han
,
W.
,
Wu
,
R.
,
Wang
,
P.
,
Wang
,
Q.
, and
Zhou
,
L.
,
2020
, “
An Experimental Study on the Water Hammer With Cavity Collapse Under Multiple Interruptions
,”
Water
,
12
(
9
), p.
2566
.10.3390/w12092566
14.
Liu
,
E.
,
Wen
,
D.
,
Peng
,
S.
,
Sun
,
H.
, and
Yang
,
Y.
,
2017
, “
A Study of the Numerical Simulation of Water Hammer With Column Separation and Cavity Collapse in Pipelines
,”
Adv. Mech. Eng.
,
9
(
9
), p.
168781401771812
.10.1177/1687814017718124
15.
Ghosh
,
P. K.
,
Agarwal
,
D.
, and
Amid
,
M.
,
2023
, “
Evaluation of Pipeline Venting in Long Pipelines
,”
ASME
Paper No. IOGPC2023-119094.10.1115/IOGPC2023-119094
16.
Taitel
,
Y.
,
Simkhis
,
M.
,
Tevelev
,
A.
, and
Barnea
,
D.
,
2016
, “
Transient Gas Liquid Flow in Hilly Terrain Pipelines
,”
Int. J. Multiphase Flow
,
86
, pp.
21
27
.10.1016/j.ijmultiphaseflow.2016.07.001
17.
Mandal
,
T. K.
,
Bhuyan
,
M. K.
,
Das
,
G.
, and
Das
,
P. K.
,
2008
, “
Effect of Undulation on Gas–Liquid Two-Phase Flow Through a Horizontal Pipeline
,”
Chem. Eng. Res. Des.
,
86
(
3
), pp.
269
278
.10.1016/j.cherd.2007.11.014
18.
Feng
,
L.
,
Zhu
,
H.
,
Song
,
Y.
,
Cao
,
W.
,
Li
,
Z.
, and
Jia
,
W.
,
2022
, “
Modeling of Gas Migration in Large Elevation Difference Oil Transmission Pipelines During the Commissioning Process
,”
Energies
,
15
(
4
), p.
1379
.10.3390/en15041379
19.
Li
,
X.
,
Yang
,
Q.
,
Xie
,
X.
,
Chen
,
S.
,
Pan
,
C.
,
He
,
Z.
,
Gong
,
J.
, and
Hong
,
B.
,
2023
, “
Spatiotemporal Simulation of Gas-Liquid Transport in the Production Process of Continuous Undulating Pipelines
,”
Energy
,
278
, p.
127859
.10.1016/j.energy.2023.127859
20.
Liu
,
C.
,
Guo
,
X. L.
,
Ju
,
S. X.
, Zhang, Y. L., Yu, T., Liu, Y., and Yang, W.,
2018
, “
Analysis of Influence of Gas Accumulation Within Gas Pipelines During Pipeline Commission and Countermeasures
,”
Pet. New Energy
,
29
(
6
), pp.
24
46.
21.
Liu
,
Z. X.
,
Yu
,
Z. H.
,
He
,
J.
, Wei, G. Q., Zhou, Z. Q., and Zhao, X. Y.,
2021
, “
Research on the Safe Commissioning Plan of the Ripuluo Crude Oil Pipeline
,”
Natural Gas Oil
,
39
(
5
), pp.
1
7.
22.
Ding
,
J. G.
,
Wang
,
Z. L.
,
Liu
,
J.
, Qing, C. W., Wang, H., Li, Z. Q., and Zhang, Y. L.,
2015
, “
Commissioning Practice of Lanzhou-Chengdu Crude Oil Pipeline
,”
Oil Gas Storage Transp.
,
34
(
11
), pp.
1198
1201.
10.6047/j.issn.1000-8241.2015.11.013
You do not currently have access to this content.