A hierarchy of models exists in the literature for the simulation of pipe transients. One-dimensional water hammer models are readily available and provide a cost-effective tool for the analysis of such transients. The main shortcoming of 1D models is the quasi-steady approximation of the frictional term, which results in poor modelling of the attenuation of the transient. To overcome this drawback, quasi-2D water hammer models were introduced, which allow the computation of the unsteady velocity profile and hence provide improved modelling of the attenuation phenomenon. Recently, interest has developed in the use of CFD models based on the Navier-Stokes equations in the simulation of fluid transients. Both axisymmetric CFD models and full 3D CFD models are used in this regard. The aim of the current paper is to carry out a comparative study between the performance of quasi-2D water hammer models, axisymmetric CFD models and full 3D CFD models. Numerical computations using the three models are performed for both laminar and turbulent flow cases. Present results show that the quasi-2D water hammer model and the axisymmetric CFD model provide near identical results in terms of computing the magnitude, phase and attenuation of the transient. Reported results also demonstrate the computational efficiency of the quasi-2D model, which provides results that agree reasonably well with the full 3D CFD model results while using a grid density which is an order of magnitude lower than the grid requirements for the full 3D CFD model.

This content is only available via PDF.
You do not currently have access to this content.