Abstract
Direct inverse analysis of faults in machinery systems such as gears using first principle is intrinsically difficult, owing to the multiple time- and length-scales involved in vibration modeling. As such, data-driven approaches have been the mainstream, whereas supervised trainings are deemed effective. Nevertheless, existing techniques often fall short in their ability to generalize from discrete data labels to the continuous spectrum of possible faults, which is further compounded by various uncertainties. This research proposes an interpretability-enhanced deep learning framework that incorporates Bayesian principles, effectively transforming convolutional neural networks (CNNs) into dynamic predictive models and significantly amplifying their generalizability with more accessible insights of the model's reasoning processes. Our approach is distinguished by a novel implementation of Bayesian inference, enabling the navigation of the probabilistic nuances of gear fault severities. By integrating variational inference into the deep learning architecture, we present a methodology that excels in leveraging limited data labels to reveal insights into both observed and unobserved fault conditions. This approach improves the model's capacity for uncertainty estimation and probabilistic generalization. Experimental validation on a lab-scale gear setup demonstrated the framework's superior performance, achieving nearly 100% accuracy in classifying known fault conditions, even in the presence of significant noise, and maintaining 96.15% accuracy when dealing with unseen fault severities. These results underscore the method's capability in discovering implicit relations between known and unseen faults, facilitating extended fault diagnosis, and effectively managing large degrees of measurement uncertainties.