Wind energy is the fastest growing and the most promising renewable energy resource. High efficiency and reliability are required for wind energy conversion systems (WECSs) to be competitive within the energy market. Difficulties in achieving the maximum level of efficiency in power extraction from the available wind energy resources warrant the collective attention of control and power system engineers. A strong movement toward sustainable energy resources and advances in control system methodologies make previously unattainable levels of efficiency possible. In this paper, we design a general resilient and robust control framework for a time-delay variable speed permanent magnet synchronous generator (PMSG)-based WECS. A linear matrix inequality-based control approach is developed to accommodate the unstructured model uncertainties, L2 type of external disturbances, and time delays in input and state feedback variables. Computer simulation results have shown the efficacy of the proposed approach of achieving asymptotic stability and H performance objectives.

References

1.
Sanchez
,
A. G.
,
Molina
,
M. G.
, and
Rizzato Lede
,
A. M.
,
2012
, “
Dynamic Model of Wind Energy Conversion Systems with PMSG-Based Variable-Speed Wind Turbines for Power System Studies
,”
Int. J. Hydrogen Energy
,
37
(
13
), pp. 
10064
10069
.
2.
Sajedi
,
S.
,
Jafari Rezabeyglo
,
H.
,
Noruzi
,
A.
,
Khalifeh
,
F.
,
Karimi
,
T.
, and
Khalifeh
,
Z.
,
2012
, “
Modeling and Application of PMSG Based Variable Speed Wind Generation System
,”
Res. J. Appl. Sci. Eng. Technol.
,
4
(
7
), pp. 
729
734
.
3.
Errami
,
Y.
,
Maaroufi
,
M.
, and
Ouassaid
,
M.
,
2011
, “
Modeling and Control Strategy of PMSG Based Variable Speed Wind Energy Conversion System
,”
International Conference on Multimedia Computing and Systems
,
IEEE
,
Ouarzazate, Morocco
, pp. 
1
6
.
4.
Shariatpanah
,
H.
,
Fadaeinedjad
,
R.
, and
Rashidinejad
,
M.
,
2013
, “
A New Model for PMSG-Based Wind Turbine with Yaw Control
,”
IEEE Trans. Energy Convers.
,
28
(
4
), pp. 
929
937
.
5.
Kim
,
H. W.
,
Kim
,
S. S.
, and
Ko
,
H. S.
,
2010
, “
Multi Machine Power System Excitation Control Design via Theories of Feedback Linearization Control and Nonlinear Robust Control
,”
Electric Power Syst. Res.
,
80
(
1
), pp. 
46
52
.
6.
Wang
,
W.
,
Wu
,
D.
,
Wang
,
Y.
, and
Ji
,
Z.
,
2010
, “
H Gain Scheduling Control of PMSG-Based Wind Power Conversion System
,”
5th IEEE Conference on industrial Electronics and Applications
,
IEEE
,
Ouarzazate, Morocco
, pp. 
712
717
.
7.
Li
,
S.
,
Haskew
,
T. A.
, and
Xu
,
L.
,
2010
, “
Conventional and Novel Control Designs for Direct Driven PMSG Wind Turbines
,”
Electric Power Syst. Res.
,
80
(
3
), pp. 
328
338
.
8.
Howlader
,
A. M.
,
Urasaki
,
N.
,
Yona
,
A.
,
Senjyu
,
T.
, and
Saber
,
A. Y.
,
2012
, “
A New Robust Controller Approach for a Wind Energy Conversion System under High Turbulence Wind Velocity
,”
7th IEEE Conference on Industrial Electronics and Applications
,
IEEE
,
Singapore
, pp. 
860
865
.
9.
Zu
,
H.
,
Zhang
,
G.-B.
,
Fei
,
S.
,
Wei
,
Z.
, and
Zhu
,
H.
,
2011
, “
A Comparison Study of Advanced State Observer Design Techniques
,”
30th Chinese Control Conference
,
IEEE
,
Yantai, China
, pp. 
2368
2373
.
10.
Ciampichetti
,
S.
,
Corradini
,
M. L.
,
Ippoliti
,
G.
, and
Orlando
,
G.
,
2011
, “
Sliding Mode Control of Permanent Magnet Synchronous Generators for Wind Turbines
,”
37th Annual Conference on IEEE Industrial Electronics Society
,
IEEE
,
Melbourne, Australia
, pp. 
740
745
.
11.
Munteanu
,
I.
,
Bratcu
,
A. I.
,
Cutululis
,
N. A.
, and
Ceanga
,
E.
,
2008
,
Optimal Control of Wind Energy Systems: Towards a Global Approach
,
Springer
,
London
.
12.
Mahmoud
,
M. S.
, and
Zribi
,
M.
,
1999
, “
H -Controllers for Time-Delay Systems Using Linear Matrix Inequalities
,”
J. Optimiz. Theory Appl.
,
100
(
1
), pp. 
89
122
.
13.
Wang
,
X.
,
Yaz
,
E. E.
, and
Long
,
J.
,
2014
, “
Robust and Resilient State-Dependent Control of Continuous-Time Nonlinear Systems with General Performance Criteria
,”
Syst. Sci. Control Eng.
,
2
(
1
), pp. 
34
40
.
14.
Scorletti
,
G.
, and
Fromion
,
V.
,
1998
, “
A Unified Approach to Time-Delay System Control: Robust and Gain-Scheduled
,”
1998 American Control Conference
,
IEEE
,
Philadelphia, PA
, pp. 
2391
2395
.
15.
Mittal
,
R.
,
Sandhu
,
K. S.
, and
Jain
,
D. K.
,
2012
. “
Ride-Through Capability of Grid Interfaced Variable Speed PMSG Based WECS
,”
IEEE 5th Power India Conference
,
IEEE
,
Murthal, India
, pp. 
1
6
.
16.
Uehara
,
A.
, et al.,
2011
. “
A Coordinated Control Method to Smooth Wind Power Fluctuations of a PMSG-Based WECS
,”
IEEE Trans. Energy Convers.
,
26
(
2
), pp. 
550
558
.
17.
Mesbahi
,
T.
,
Ghennam
,
T.
, and
Berkouk
,
E. M.
,
2011
, “
Control of a Wind Energy Conversion System with Active Filtering Function
,”
International Conference on Power Engineering, Energy and Electrical Drives
,
IEEE
,
Malaga, Spain
, pp. 
1
6
.
18.
Dalala
,
Z. M.
,
Zahid
,
Z. U.
, and
Lai
,
J. S.
,
2013
. “
New Overall Control Strategy for Small-Scale WECS in MPPT and Stall Regions with Mode Transfer Control
,”
IEEE Trans. Energy Convers.
,
28
(
4
), pp. 
1082
1092
.
19.
Muhando
,
E. B.
,
Senjyu
,
T.
,
Uehara
,
A.
, and
Funabashi
,
T.
,
2011
. “
Gain-Scheduled H Control for WECS via LMI Techniques and Parametrically Dependent Feedback Part I: Model Development Fundamentals
,”
IEEE Trans. Ind. Electron.
,
58
(
1
), pp. 
48
56
.
20.
Muhando
,
B. E.
, and
Wies
,
R. W.
,
2011
, “
Nonlinear H Constrained Feedback Control for Grid-Interactive WECS under High Stochasticity
,”
IEEE Trans. Energy Convers.
,
26
(
4
), pp. 
1000
1009
.
21.
Jamal Alden
,
M.
, and
Wang
,
X.
,
2015
, “
Robust H Control of Time Delayed Power Systems
,”
International Mechanical Engineering Congress & Exposition
,
ASME
,
New York
, pp. 
1
8
.
22.
Bianchi
,
F. D.
,
De Battista
,
H.
, and
Mantz
,
R. J.
,
2006
,
Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design
,
Springer
,
Berlin, Germany
.
23.
El Mokadem
,
M.
,
Courtecuisse
,
V.
,
Saudemont
,
C.
,
Robyns
,
B.
, and
Deuse
,
J.
,
2009
. “
Experimental Study of Variable Speed Wind Generator Contribution to Primary Frequency Control
,”
Renewable Energy
,
34
(
3
), pp. 
833
844
. 0960-1481
You do not currently have access to this content.