Abstract

The second-order saddlepoint approximation (SOSPA) has been used for component reliability analysis for higher accuracy than the traditional second-order reliability method (SORM). This work extends the second-order saddlepoint approximation (SPA) to system reliability analysis. The joint distribution of all the component responses is approximated by a multivariate normal distribution. To maintain high accuracy of the approximation, the proposed method employs the second-order SPA to accurately generate the marginal distributions of the component responses; to simplify computations and achieve high efficiency, the proposed method estimates the covariance matrix of the multivariate normal distribution with the first-order approximation to the component responses. Examples demonstrate the high effectiveness of the second-order SPA method for system reliability analysis.

References

1.
Hu
,
Z.
, and
Du
,
X.
,
2014
, “
Lifetime Cost Optimization With Time-Dependent Reliability
,”
Eng. Optim.
,
46
(
10
), pp.
1389
1410
.10.1080/0305215X.2013.841905
2.
Rausand
,
M.
, and
Høyland
,
A.
,
2004
,
System Reliability Theory: Models, Statistical Methods, and Applications
,
Wiley
, New York.
3.
Ditlevsen
,
O.
,
1979
, “
Narrow Reliability Bounds for Structural Systems
,”
J. Struct. Mech.
,
7
(
4
), pp.
453
472
.10.1080/03601217908905329
4.
Song
,
J.
, and
Der Kiureghian
,
A.
,
2003
, “
Bounds on System Reliability by Linear Programming
,”
J. Eng. Mech.
,
129
(
6
), pp.
627
636
.10.1061/(ASCE)0733-9399(2003)129:6(627)
5.
Youn
,
B. D.
, and
Wang
,
P.
,
2009
, “
Complementary Intersection Method for System Reliability Analysis
,”
ASME J. Mech. Des.
,
131
(
4
), p.
041004
.10.1115/1.3086794
6.
Du
,
X.
,
2010
, “
System Reliability Analysis With Saddlepoint Approximation
,”
Struct. Multidiscip. Optim.
,
42
(
2
), pp.
193
208
.10.1007/s00158-009-0478-x
7.
Kang
,
W. H.
,
Song
,
J.
, and
Gardoni
,
P.
,
2008
, “
Matrix-Based System Reliability Method and Applications to Bridge Networks
,”
Reliab. Eng. Syst. Saf.
,
93
(
11
), pp.
1584
1593
.10.1016/j.ress.2008.02.011
8.
Hu
,
C.
, and
Youn
,
B. D.
,
2011
, “
Adaptive-Sparse Polynomial Chaos Expansion for Reliability Analysis and Design of Complex Engineering Systems
,”
Struct. Multidiscip. Optim.
,
43
(
3
), pp.
419
442
.10.1007/s00158-010-0568-9
9.
Rocco
,
C. M.
, and
Moreno
,
J. A.
,
2002
, “
Fast Monte Carlo Reliability Evaluation Using Support Vector Machine
,”
Reliab. Eng. Syst. Saf.
,
76
(
3
), pp.
237
243
.10.1016/S0951-8320(02)00015-7
10.
Bichon
,
B.
,
Eldred
,
M.
,
Swiler
,
L.
,
Mahadevan
,
S.
, and
McFarland
,
J.
,
2007
, “
Multimodal Reliability Assessment for Complex Engineering Applications Using Efficient Global Optimization
,”
AIAA
Paper No. AIAA-2007-1946.10.2514/6.2007-1946
11.
Bichon
,
B. J.
,
McFarland
,
J. M.
, and
Mahadevan
,
S.
,
2011
, “
Efficient Surrogate Models for Reliability Analysis of Systems With Multiple Failure Modes
,”
Reliab. Eng. Syst. Saf.
,
96
(
10
), pp.
1386
1395
.10.1016/j.ress.2011.05.008
12.
Fauriat
,
W.
, and
Gayton
,
N.
,
2014
, “
AK-SYS: An Adaptation of the AK-MCS Method for System Reliability
,”
Reliab. Eng. Syst. Saf.
,
123
, pp.
137
144
.10.1016/j.ress.2013.10.010
13.
Wu
,
H.
,
Zhu
,
Z.
, and
Du
,
X.
,
2020
, “
System Reliability Analysis With Autocorrelated Kriging Predictions
,”
ASME J. Mech. Des.
, 142(10), p.
101702
.10.1115/1.4046648
14.
Madsen
,
H. O.
,
Krenk
,
S.
, and
Lind
,
N. C.
,
2006
,
Methods of Structural Safety
,
Courier Corporation
, North Chelmsford, MA.
15.
Du
,
X.
, and
Sudjianto
,
A.
,
2004
, “
First-Order Saddlepoint Approximation for Reliability Analysis
,”
AIAA J.
,
42
(
6
), pp.
1199
1207
.10.2514/1.3877
16.
Der Kiureghian
,
A.
, and
Dakessian
,
T.
,
1998
, “
Multiple Design Points in First and Second-Order Reliability
,”
Struct. Saf.
,
20
(
1
), pp.
37
49
.10.1016/S0167-4730(97)00026-X
17.
Madsen
,
H.
,
1985
, “
First-Order Vs. Second-Order Reliability Analysis of Series Structures
,”
Struct. Saf.
,
2
(
3
), pp.
207
214
.10.1016/0167-4730(85)90027-X
18.
Du
,
X.
,
2008
, “
Saddlepoint Approximation for Sequential Optimization and Reliability Analysis
,”
ASME J. Mech. Des.
,
130
(
1
), p.
011011
.10.1115/1.2717225
19.
Hohenbichler
,
M.
, and
Rackwitz
,
R.
,
1982
, “
First-Order Concepts in System Reliability
,”
Struct. Saf.
,
1
(
3
), pp.
177
188
.10.1016/0167-4730(82)90024-8
20.
Hu
,
Z.
, and
Du
,
X.
,
2018
, “
Saddlepoint Approximation Reliability Method for Quadratic Functions in Normal Variables
,”
Struct. Saf.
,
71
, pp.
24
32
.10.1016/j.strusafe.2017.11.001
21.
Papadimitriou
,
D. I.
,
Mourelatos
,
Z. P.
, and
Hu
,
Z.
,
2019
, “
Reliability Analysis Using Second-Order Saddlepoint Approximation and Mixture Distributions
,”
ASME J. Mech. Des.
,
141
(
2
), p.
021401
.10.1115/1.4041370
22.
Der Kiureghian
,
A.
,
Lin
,
H. Z.
, and
Hwang
,
S.
,
1987
, “
Second-Order Reliability Approximations
,”
J. Eng. Mech.
,
113
(
8
), pp.
1208
1225
.10.1061/(ASCE)0733-9399(1987)113:8(1208)
23.
Konishi
,
S.
,
Niki
,
N.
, and
Gupta
,
A.
,
1988
, “
Asymptotic Expansions for the Distribution of Quadratic Forms in Normal Variables
,”
Ann. Inst. Stat. Math.
,
40
(
2
), pp.
279
296
.10.1007/BF00052345
24.
Tanizaki
,
H.
,
2004
,
Computational Methods in Statistics and Econometrics
,
CRC Press
, Boca Raton, FL.
25.
Lugannani
,
R.
, and
Rice
,
S.
,
1980
, “
Saddle Point Approximation for the Distribution of the Sum of Independent Random Variables
,”
Adv. Appl. Probab.
,
12
(
2
), pp.
475
490
.10.2307/1426607
26.
Zeng
,
P.
,
Jimenez
,
R.
,
Li
,
T.
,
Chen
,
Y.
, and
Feng
,
X.
,
2017
, “
Application of Quasi-Newton Approximation-Based SORM for System Reliability Analysis of a Layered Soil Slope
,” Paper No.
Geo-Risk 2017
.10.1061/9780784480700.011
27.
Gollwitzer
,
S.
, and
Rackwitz
,
R.
,
1988
, “
An Efficient Numerical Solution to the Multinormal Integral
,”
Probab. Eng. Mech.
,
3
(
2
), pp.
98
101
.10.1016/0266-8920(88)90021-5
28.
Pandey
,
M.
,
1998
, “
An Effective Approximation to Evaluate Multinormal Integrals
,”
Struct. Saf.
,
20
(
1
), pp.
51
67
.10.1016/S0167-4730(97)00023-4
29.
Genz
,
A.
,
1992
, “
Numerical Computation of Multivariate Normal Probabilities
,”
J. Comput. Gr. Stat.
,
1
(
2
), pp.
141
149
.10.2307/1390838
30.
Wei
,
P.
,
Liu
,
F.
, and
Tang
,
C.
,
2018
, “
Reliability and Reliability-Based Importance Analysis of Structural Systems Using Multiple Response Gaussian Process Model
,”
Reliab. Eng. Syst. Saf.
,
175
, pp.
183
195
.10.1016/j.ress.2018.03.013
31.
Du
,
X.
, and
Chen
,
W.
,
2004
, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
233
.10.1115/1.1649968
32.
Gu
,
L.
,
Yang
,
R. J.
,
Tho
,
C. H.
,
Makowskit
,
M.
,
Faruquet
,
O.
,
Li
,
Y.
, and
Li
,
Y.
,
2001
, “
Optimisation and Robustness for Crashworthiness of Side Impact
,”
Int. J. Veh. Des.
,
26
(
4
), pp.
348
360
.10.1504/IJVD.2001.005210
You do not currently have access to this content.