Abstract

In pressurized water nuclear reactors, the seismic performance of fuel assemblies is governed by their spacer grids (SGs) which may experience impacts with neighboring fuel assembly SGs or with the core barrel, depending on the intensity of the seismic event. Nonlinear dynamic analysis aiming at computing the maximum permanent deformation in a statistic framework is computationally demanding due to the different possible core configurations and the dimension of the dataset of seismic excitations. Hence, surrogate models trained by the physics-based dynamic model are proposed to analyze different scenarios, i.e., explore the space of potential core configurations and seismic excitations. Starting from ground motion records corresponding to six levels of seismic hazard, the dynamic excitation at the elevation of the reactor pressure vessel is obtained via transfer functions. Correlation between different seismic intensity measures and the maximum permanent deformation is evaluated. The performance of two well-established surrogate models, namely, artificial neural networks (ANN) and Gaussian process (GP) for regression problems is analyzed and discussed. Bayesian techniques are adopted to enhance the robustness of the trained surrogate models by training sets of neural networks and estimating the hyper-parameter of the GP.

References

1.
Fontaine
,
B.
, and
Politopoulos
,
I.
,
2000
, “
A Non Linear Model for the PWR Fuel Assembly Seismic Analysis
,”
Nucl. Eng. Des.
,
195
(
3
), pp.
321
329
.10.1016/S0029-5493(99)00217-4
2.
Yoon
,
K.
,
Kim
,
J.
,
Lee
,
K.
,
Lee
,
Y.
, and
Kim
,
H.
,
2009
, “
Control Rod Drop Analysis by Finite Element Method Using Fluid–Structure Interaction for a Pressurized Water Reactor Power Plant
,”
Nucl. Eng. Des.
,
239
(
10
), pp.
1857
1861
.10.1016/j.nucengdes.2009.05.023
3.
Ricciardi
,
G.
,
Bellizzi
,
S.
,
Collard
,
B.
, and
Cochelin
,
B.
,
2009
, “
Row of Fuel Assemblies Analysis Under Seismic Loading: Modelling and Experimental Validation
,”
Nucl. Eng. Des.
,
239
(
12
), pp.
2692
2704
.10.1016/j.nucengdes.2009.08.029
4.
Altieri
,
D.
,
Tubaldi
,
E.
, and
Patelli
,
E.
,
2018
, “
Probabilistic Seismic Assessment of Pounding Forces
,”
European Conference on Earthquake Engineering
, Thessaloniki, Greece, June 18–21, Paper No.
11160
.http://papers.16ecee.org/files/Paper%20AD.pdf
5.
Altieri
,
D.
,
Tubaldi
,
E.
,
de Angelis
,
M.
,
Patelli
,
E.
, and
Dall'Asta
,
A.
,
2018
, “
Reliability-Based Optimal Design of Nonlinear Viscous Dampers for the Seismic Protection of Structural Systems
,”
Bull. Earthquake Eng.
,
16
(
2
), pp.
963
982
.10.1007/s10518-017-0233-4
6.
Pellissetti
,
M.
,
Lang
,
H.
,
Kessler
,
H.
, and
Schramm
,
K.
,
2013
, “
Realistic Seismic Fragility Analysis of the Reactor Trip Using Coupled Models
,” Annual Meeting on Nuclear Technology, Berlin, Germany, May 14–16, p.
1142
.
7.
Jhung
,
M. J.
,
1998
, “
Integrity Evaluation of Fuel Assembly for Earthquake
,”
Nucl. Eng. Des.
,
185
(
1
), pp.
97
108
.10.1016/S0029-5493(98)00230-1
8.
Oparaji
,
U.
,
Sheu
,
R.-J.
,
Bankhead
,
M.
,
Austin
,
J.
, and
Patelli
,
E.
,
2017
, “
Robust Artificial Neural Network for Reliability and Sensitivity Analyses of Complex Non-Linear Systems
,”
Neural Networks
,
96
, pp.
80
90
.10.1016/j.neunet.2017.09.003
9.
Forrester
,
A. I.
, and
Keane
,
A. J.
,
2009
, “
Recent Advances in Surrogate-Based Optimization
,”
Prog. Aerosp. Sci.
,
45
(
1–3
), pp.
50
79
.10.1016/j.paerosci.2008.11.001
10.
Sadeghi
,
J.
,
Angelis
,
M. D.
, and
Patelli
,
E.
,
2018
, “
Frequentist History Matching With Interval Predictor Models
,”
Appl. Math. Modell.
,
61
, pp.
29
48
.10.1016/j.apm.2018.04.003
11.
Sadeghi
,
J.
,
de Angelis
,
M.
, and
Patelli
,
E.
,
2019
, “
Efficient Training of Interval Neural Networks for Imprecise Training Data
,”
Neural Networks
,
118
, pp.
338
351
.10.1016/j.neunet.2019.07.005
12.
Sadeghi
,
J.
,
de Angelis
,
M.
, and
Patelli
,
E.
,
2019
, “
Analytic Probabilistic Safety Analysis Under Severe Uncertainty
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A
, 6(1) p.
04019019
.10.1061/AJRUA6.0001028
13.
Bishop
,
C. M.
,
1995
,
Neural Networks for Pattern Recognition
,
Oxford University Press
, Cambridge, UK.
14.
Nilsen
,
T.
, and
Aven
,
T.
,
2003
, “
Models and Model Uncertainty in the Context of Risk Analysis
,”
Reliab. Eng. Syst. Saf.
,
79
(
3
), pp.
309
317
.10.1016/S0951-8320(02)00239-9
15.
Wonnacott
,
T. H.
, and
Wonnacott
,
R. J.
,
1990
,
Introductory Statistics
, Vol.
4
,
Wiley
, New York.
16.
Gershman
,
S. J.
, and
Blei
,
D. M.
,
2012
, “
A Tutorial on Bayesian Nonparametric Models
,”
J. Math. Psychol.
,
56
(
1
), pp.
1
12
.10.1016/j.jmp.2011.08.004
17.
Williams
,
C.
, and
Rasmussen
,
C.
,
2006
,
Gaussian Processes Machine Learning
, Vol.
2
, MIT Press, Cambridge, MA, p.
4
.
18.
Snoek
,
J.
,
Larochelle
,
H.
, and
Adams
,
R. P.
,
2012
, “
Practical Bayesian Optimization of Machine Learning Algorithms
,”
Advances in Neural Information Processing Systems, pp.
2951
2959
.
19.
Patelli
,
E.
,
2016
,
Handbook of Uncertainty Quantification
(COSSAN: A Multidisciplinary Software Suite for Uncertainty Quantification and Risk Management),
Springer International Publishing
,
Cham, Switzerland
, pp.
1
69
.10.1007/978-3-319-11259-6_59-1
20.
Patelli
,
E.
,
George-Williams
,
H.
,
Sadeghi
,
J.
,
Rocchetta
,
R.
,
Broggi
,
M.
, and
de Angelis
,
M.
,
2018
, “
Opencossan 2.0: An Efficient Computational Toolbox for Risk, Reliability and Resilience Analysis
,”
Proceedings of the Joint ICVRAM ISUMA UNCERTAINTIES Conference
, Florianópolis, Brazil, Apr. 8–11.https://icvramisuma2018.org/cd/web/PDF/ICVRAMISUMA2018-0022.PDF
21.
Guliyev
,
N. J.
, and
Ismailov
,
V. E.
,
2018
, “
On the Approximation by Single Hidden Layer Feedforward Neural Networks With Fixed Weights
,”
Neural Networks
,
98
, pp.
296
304
.10.1016/j.neunet.2017.12.007
22.
Tolo
,
S.
,
Tian
,
X.
,
Bausch
,
N.
,
Becerra
,
V.
,
Santhosh
,
T. V.
,
Vinod
,
G.
, and
Patelli
,
E.
,
2019
, “
Robust on-Line Diagnosis Tool for the Early Accident Detection in Nuclear Power Plants
,”
Reliab. Eng. Syst. Saf.
,
186
, pp.
110
119
.10.1016/j.ress.2019.02.015
You do not currently have access to this content.