Abstract

Modeling and simulation for additive manufacturing (AM) are critical enablers for understanding process physics, conducting process planning and optimization, and streamlining qualification and certification. It is often the case that a suite of hierarchically linked (or coupled) simulation models is needed to achieve the above tasks, as the entirety of the complex physical phenomena relevant to the understanding of process-structure-property-performance relationships in the context of AM precludes the use of a single simulation framework. In this study using a Bayesian network approach, we address the important problem of conducting uncertainty quantification (UQ) analysis for multiple hierarchical models to establish process-microstructure relationships in laser powder bed fusion (LPBF) AM. More significantly, we present the framework to calibrate and analyze simulation models that have experimentally unmeasurable variables, which are quantities of interest predicted by an upstream model and deemed necessary for the downstream model in the chain. We validate the framework using a case study on predicting the microstructure of a binary nickel-niobium alloy processed using LPBF as a function of processing parameters. Our framework is shown to be able to predict segregation of niobium with up to 94.3% prediction accuracy on test data.

References

1.
Parthasarathy
,
J.
,
Starly
,
B.
, and
Raman
,
S.
,
2011
, “
A Design for the Additive Manufacture of Functionally Graded Porous Structures With Tailored Mechanical Properties for Biomedical Applications
,”
J. Manuf. Process.
,
13
(
2
), pp.
160
170
.10.1016/j.jmapro.2011.01.004
2.
Muller
,
P.
,
Mognol
,
P.
, and
Hascoet
,
J.-Y.
,
2013
, “
Modeling and Control of a Direct Laser Powder Deposition Process for Functionally Graded Materials (Fgm) Parts Manufacturing
,”
J. Mater. Process. Technol.
,
213
(
5
), pp.
685
692
.10.1016/j.jmatprotec.2012.11.020
3.
Tapia
,
G.
, and
Elwany
,
A.
,
2014
, “
A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
060801
.10.1115/1.4028540
4.
Spears
,
T. G.
, and
Gold
,
S. A.
,
2016
, “
In-Process Sensing in Selective Laser Melting (Slm) Additive Manufacturing
,”
Integrat. Mater. Manuf. Innov.
,
5
(
1
), pp.
16
40
.10.1186/s40192-016-0045-4
5.
Tolosa
,
I.
,
Garciandía
,
F.
,
Zubiri
,
F.
,
Zapirain
,
F.
, and
Esnaola
,
A.
,
2010
, “
Study of Mechanical Properties of Aisi 316 Stainless Steel Processed by “Selective Laser Melting”, Following Different Manufacturing Strategies
,”
Int. J. Adv. Manuf. Technol.
,
51
(
5–8
), pp.
639
647
.10.1007/s00170-010-2631-5
6.
Garibaldi
,
M.
,
Ashcroft
,
I.
,
Simonelli
,
M.
, and
Hague
,
R.
,
2016
, “
Metallurgy of High-Silicon Steel Parts Produced Using Selective Laser Melting
,”
Acta Mater.
,
110
, pp.
207
216
.10.1016/j.actamat.2016.03.037
7.
Mahmoudi
,
M.
,
Elwany
,
A.
,
Yadollahi
,
A.
,
Thompson
,
S. M.
,
Bian
,
L.
, and
Shamsaei
,
N.
,
2017
, “
Mechanical Properties and Microstructural Characterization of Selective Laser Melted 17-4 ph Stainless Steel
,”
Rapid Prototyp. J.
,
23
(
2
), pp.
280
294
.10.1108/RPJ-12-2015-0192
8.
Facchini
,
L.
,
Vicente
,
N.
,
Lonardelli
,
I.
,
Magalini
,
E.
,
Robotti
,
P.
, and
Molinari
,
A.
,
2010
, “
Metastable Austenite in 17–4 Precipitation-Hardening Stainless Steel Produced by Selective Laser Melting
,”
Adv. Eng. Mater.
,
12
(
3
), pp.
184
188
.10.1002/adem.200900259
9.
Li
,
S.
,
Hassanin
,
H.
,
Attallah
,
M. M.
,
Adkins
,
N. J.
, and
Essa
,
K.
,
2016
, “
The Development of Tini-Based Negative Poisson's Ratio Structure Using Selective Laser Melting
,”
Acta Mater.
,
105
, pp.
75
83
.10.1016/j.actamat.2015.12.017
10.
Murr
,
L.
,
Quinones
,
S.
,
Gaytan
,
S.
,
Lopez
,
M.
,
Rodela
,
A.
,
Martinez
,
E.
,
Hernandez
,
D.
,
Martinez
,
E.
,
Medina
,
F.
, and
Wicker
,
R.
,
2009
, “
Microstructure and Mechanical Behavior of Ti–6Al–4V Produced by Rapid-Layer Manufacturing, for Biomedical Applications
,”
J. Mech. Behav. Biomed. Mater.
,
2
(
1
), pp.
20
32
.10.1016/j.jmbbm.2008.05.004
11.
El-Desouky
,
A.
,
Carter
,
M.
,
Mahmoudi
,
M.
,
Elwany
,
A.
, and
LeBlanc
,
S.
,
2017
, “
Influences of Energy Density on Microstructure and Consolidation of Selective Laser Melted Bismuth Telluride Thermoelectric Powder
,”
J. Manuf. Process.
,
25
, pp.
411
417
.10.1016/j.jmapro.2016.12.008
12.
Jia
,
Q.
, and
Gu
,
D.
,
2014
, “
Selective Laser Melting Additive Manufacturing of Inconel 718 Superalloy Parts: Densification, Microstructure and Properties
,”
J. Alloys Compd.
,
585
, pp.
713
721
.10.1016/j.jallcom.2013.09.171
13.
Ma
,
J.
,
Franco
,
B.
,
Tapia
,
G.
,
Karayagiz
,
K.
,
Johnson
,
L.
,
Liu
,
J.
,
Arroyave
,
R.
,
Karaman
,
I.
, and
Elwany
,
A.
,
2017
, “
Spatial Control of Functional Response in 4D-Printed Active Metallic Structures
,”
Sci. Rep.
,
7
(
1
), pp. 1–8.10.1038/srep46707
14.
Tapia
,
G.
,
Johnson
,
L.
,
Franco
,
B.
,
Karayagiz
,
K.
,
Ma
,
J.
,
Arroyave
,
R.
,
Karaman
,
I.
, and
Elwany
,
A.
,
2017
, “
Bayesian Calibration and Uncertainty Quantification for a Physics-Based Precipitation Model of Nickel–Titanium Shape-Memory Alloys
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071002
.10.1115/1.4035898
15.
Elahinia
,
M.
,
Moghaddam
,
N. S.
,
Andani
,
M. T.
,
Amerinatanzi
,
A.
,
Bimber
,
B. A.
, and
Hamilton
,
R. F.
,
2016
, “
Fabrication of Niti Through Additive Manufacturing: A Review
,”
Prog. Mater. Sci.
,
83
, pp.
630
663
.10.1016/j.pmatsci.2016.08.001
16.
Bormann
,
T.
,
Schumacher
,
R.
,
Müller
,
B.
,
Mertmann
,
M.
, and
de Wild
,
M.
,
2012
, “
Tailoring Selective Laser Melting Process Parameters for Niti Implants
,”
J. Mater. Eng. Perform.
,
21
(
12
), pp.
2519
2524
.10.1007/s11665-012-0318-9
17.
Haberland
,
C.
,
Elahinia
,
M.
,
Walker
,
J. M.
,
Meier
,
H.
, and
Frenzel
,
J.
,
2014
, “
On the Development of High Quality Niti Shape Memory and Pseudoelastic Parts by Additive Manufacturing
,”
Smart Mater. Struct.
,
23
(
10
), p.
104002
.10.1088/0964-1726/23/10/104002
18.
Walker
,
J. M.
,
Haberland
,
C.
,
Taheri Andani
,
M.
,
Karaca
,
H. E.
,
Dean
,
D.
, and
Elahinia
,
M.
,
2016
, “
Process Development and Characterization of Additively Manufactured Nickel–Titanium Shape Memory Parts
,”
J. Intell. Mater. Syst. Struct.
,
27
(
19
), pp.
2653
2660
.10.1177/1045389X16635848
19.
Kerwien
,
S.
,
Collings
,
S.
,
Liou
,
F.
, and
Bytnar
,
M.
,
2013
, Measurement Science Roadmap for Metal-Based Additive Manufacturing, National Institute of Standards and Technology, Gaithersburg, MD, Report. https://www.nist.gov/system/files/documents/el/isd/NISTAdd_Mfg_Report_FINAL-2.pdf
20.
Mani
,
M.
,
Lane
,
B.
,
Donmez
,
A.
, Feng, S.,
Moylan
,
S.
, and
Fesperman
,
R.
,
2015
,
Measurement Science Needs for Real-Time Control of Additive Manufacturing Powder Bed Fusion Processes
,
NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology
, Gaithersburg, MD, [online].10.6028/NIST.IR.8036
21.
Seifi
,
M.
,
Salem
,
A.
,
Beuth
,
J.
,
Harrysson
,
O.
, and
Lewandowski
,
J. J.
,
2016
, “
Overview of Materials Qualification Needs for Metal Additive Manufacturing
,”
JOM
,
68
(
3
), pp.
747
764
.10.1007/s11837-015-1810-0
22.
Montazeri
,
M.
,
Yavari
,
R.
,
Rao
,
P.
, and
Boulware
,
P.
,
2018
, “
In-Process Monitoring of Material Cross-Contamination Defects in Laser Powder Bed Fusion
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111001
.10.1115/1.4040543
23.
Mahmoudi
,
M.
,
Ezzat
,
A. A.
, and
Elwany
,
A.
,
2019
, “
Layerwise Anomaly Detection in Laser Powder-Bed Fusion Metal Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031002
.10.1115/1.4042108
24.
Montazeri
,
M.
, and
Rao
,
P.
,
2018
, “
Sensor-Based Build Condition Monitoring in Laser Powder Bed Fusion Additive Manufacturing Process Using a Spectral Graph Theoretic Approach
,”
ASME J. Manuf. Sci. Eng.
,
140
(
9
), p.
091002
.10.1115/1.4040264
25.
Imani
,
F.
,
Gaikwad
,
A.
,
Montazeri
,
M.
,
Rao
,
P.
,
Yang
,
H.
, and
Reutzel
,
E.
,
2018
, “
Process Mapping and in-Process Monitoring of Porosity in Laser Powder Bed Fusion Using Layerwise Optical Imaging
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), p.
101009
.10.1115/1.4040615
26.
Khairallah
,
S. A.
,
Anderson
,
A. T.
,
Rubenchik
,
A.
, and
King
,
W. E.
,
2016
, “
Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones
,”
Acta Mater.
,
108
, pp.
36
45
.10.1016/j.actamat.2016.02.014
27.
Megahed
,
M.
,
Mindt
,
H.-W.
,
N'Dri
,
N.
,
Duan
,
H.
, and
Desmaison
,
O.
,
2016
, “
Metal Additive-Manufacturing Process and Residual Stress Modeling
,”
Integrat. Mater. Manuf. Innov.
,
5
(
1
), pp.
61
93
.10.1186/s40192-016-0047-2
28.
Zhang
,
D.
,
Cai
,
Q.
,
Liu
,
J.
,
Zhang
,
L.
, and
Li
,
R.
,
2010
, “
Select Laser Melting of w–ni–fe Powders: Simulation and Experimental Study
,”
Int. J. Adv. Manuf. Technol.
,
51
(
5–8
), pp.
649
658
.10.1007/s00170-010-2641-3
29.
Masoomi
,
M.
,
Thompson
,
S. M.
, and
Shamsaei
,
N.
,
2017
, “
Laser Powder Bed Fusion of Ti-6Al-4V Parts: Thermal Modeling and Mechanical Implications
,”
Int. J. Mach. Tools Manuf.
,
118–119
, pp.
73
90
.10.1016/j.ijmachtools.2017.04.007
30.
National Research Council
,
2008
,
Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security
,
National Academies Press
, Washington, DC.
31.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Uncertainty Quantification in Prediction of Material Properties During Additive Manufacturing
,”
Scr. Mater.
,
135
, pp.
135
140
.10.1016/j.scriptamat.2016.10.014
32.
O'Hagan
,
A.
,
2006
, “
Bayesian Analysis of Computer Code Outputs: A Tutorial
,”
Reliab. Eng. Syst. Saf.
,
91
(
10–11
), pp.
1290
1300
.10.1016/j.ress.2005.11.025
33.
Chernatynskiy
,
A.
,
Phillpot
,
S. R.
, and
LeSar
,
R.
,
2013
, “
Uncertainty Quantification in Multiscale Simulation of Materials: A Prospective
,”
Annu. Rev. Mater. Res.
,
43
(
1
), pp.
157
182
.10.1146/annurev-matsci-071312-121708
34.
Panchal
,
J. H.
,
Kalidindi
,
S. R.
, and
McDowell
,
D. L.
,
2013
, “
Key Computational Modeling Issues in Integrated Computational Materials Engineering
,”
Comput.-Aided Des.
,
45
(
1
), pp.
4
25
.10.1016/j.cad.2012.06.006
35.
McDowell
,
D. L.
, and
Kalidindi
,
S. R.
,
2016
, “
The Materials Innovation Ecosystem: A Key Enabler for the Materials Genome Initiative
,”
MRS Bull.
,
41
(
4
), pp.
326
337
.10.1557/mrs.2016.61
36.
Trucano
,
T. G.
,
Swiler
,
L. P.
,
Igusa
,
T.
,
Oberkampf
,
W. L.
, and
Pilch
,
M.
,
2006
, “
Calibration, Validation, and Sensitivity Analysis: What's What
,”
Reliab. Eng. Syst. Saf.
,
91
(
10–11
), pp.
1331
1357
.10.1016/j.ress.2005.11.031
37.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc. Ser. B (Stat. Methodol.)
,
63
(
3
), pp.
425
464
.10.1111/1467-9868.00294
38.
Conti
,
S.
, and
O'Hagan
,
A.
,
2010
, “
Bayesian Emulation of Complex Multi-Output and Dynamic Computer Models
,”
J. Stat. Plann. Infer.
,
140
(
3
), pp.
640
651
.10.1016/j.jspi.2009.08.006
39.
Higdon
,
D.
,
Nakhleh
,
C.
,
Gattiker
,
J.
, and
Williams
,
B.
,
2008
, “
A Bayesian Calibration Approach to the Thermal Problem
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
29–32
), pp.
2431
2441
.10.1016/j.cma.2007.05.031
40.
Urbina
,
A.
,
Mahadevan
,
S.
, and
Paez
,
T. L.
,
2012
, “
A Bayes Network Approach to Uncertainty Quantification in Hierarchically Developed Computational Models
,”
Int. J. Uncertainty Quantif.
,
2
(
2
), pp.
173
193
.10.1615/Int.J.UncertaintyQuantification.v2.i2.70
41.
Kyzyurova
,
K. N.
,
Berger
,
J. O.
, and
Wolpert
,
R. L.
,
2018
, “
Coupling Computer Models Through Linking Their Statistical Emulators
,”
SIAM/ASA J. Uncertainty Quantif.
,
6
(
3
), pp.
1151
1171
.10.1137/17M1157702
42.
Nagel
,
J. B.
, and
Sudret
,
B.
,
2016
, “
A Unified Framework for Multilevel Uncertainty Quantification in Bayesian Inverse Problems
,”
Probab. Eng. Mech.
,
43
, pp.
68
84
.10.1016/j.probengmech.2015.09.007
43.
DeCarlo
,
E. C.
,
Smarslok
,
B. P.
, and
Mahadevan
,
S.
,
2016
, “
Segmented Bayesian Calibration of Multidisciplinary Models
,”
AIAA J.
,
54
(
12
), pp.
3727
3741
.10.2514/1.J054960
44.
Ghoreishi
,
S.
, and
Allaire
,
D.
,
2017
, “
Adaptive Uncertainty Propagation for Coupled Multidisciplinary Systems
,”
AIAA J.
,
55
(
11
), pp.
3940
11
.10.2514/1.J055893
45.
Wang
,
Z.
,
Liu
,
P.
,
Ji
,
Y.
,
Mahadevan
,
S.
,
Horstemeyer
,
M. F.
,
Hu
,
Z.
,
Chen
,
L.
, and
Chen
,
L.-Q.
,
2019
, “
Uncertainty Quantification in Metallic Additive Manufacturing Through Physics-Informed Data-Driven Modeling
,”
JOM
,
71
(
8
), pp.
2625
2634
.10.1007/s11837-019-03555-z
46.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Uncertainty Quantification and Management in Additive Manufacturing: Current Status, Needs, and Opportunities
,”
Int. J. Adv. Manuf. Technol.
,
93
(
5–8
), pp.
2855
2874
.10.1007/s00170-017-0703-5
47.
Mahmoudi
,
M.
,
Tapia
,
G.
,
Karayagiz
,
K.
,
Franco
,
B.
,
Ma
,
J.
,
Arroyave
,
R.
,
Karaman
,
I.
, and
Elwany
,
A.
,
2018
, “
Multivariate Calibration and Experimental Validation of a 3D Finite Element Thermal Model for Laser Powder Bed Fusion Metal Additive Manufacturing
,”
Integrat. Mater. Manuf. Innov.
,
7
(
3
), pp.
116
135
.10.1007/s40192-018-0113-z
48.
Seede
,
R.
,
Shoukr
,
D.
,
Zhang
,
B.
,
Whitt
,
A.
,
Gibbons
,
S.
,
Flater
,
P.
,
Elwany
,
A.
,
Arroyave
,
R.
, and
Karaman
,
I.
,
2020
, “
An Ultra-High Strength Martensitic Steel Fabricated Using Selective Laser Melting Additive Manufacturing: Densification, Microstructure, and Mechanical Proper-Ties
,”
Acta Mater.
,
186
, pp.
199
214
.10.1016/j.actamat.2019.12.037
49.
Karayagiz
,
K.
,
Johnson
,
L.
,
Seede
,
R.
,
Attari
,
V.
,
Zhang
,
B.
,
Huang
,
X.
,
Ghosh
,
S.
,
Duong
,
T.
,
Karaman
,
I.
,
Elwany
,
A.
, and
Arroyave
,
R.
,
2020
, “
Finite Interface Dissipation Phase Field Modeling of ni–nb Under Additive Manufacturing Conditions
,”
Acta Mater.
,
185
, pp.
320
339
.10.1016/j.actamat.2019.11.057
50.
Karayagiz
,
K.
,
Elwany
,
A.
,
Tapia
,
G.
,
Franco
,
B.
,
Johnson
,
L.
,
Ma
,
J.
,
Karaman
,
I.
, and
Arroyave
,
R.
,
2019
, “
Numerical and Experimental Analysis of Heat Distribution in the Laser Powder Bed Fusion of Ti-6Al-4V
,”
IISE Trans.
,
51
(
2
), pp.
136
152
.10.1080/24725854.2018.1461964
51.
Steinbach
,
I.
,
Zhang
,
L.
, and
Plapp
,
M.
,
2012
, “
Phase-Field Model With Finite Interface Dissipation
,”
Acta Mater.
,
60
(
6–7
), pp.
2689
2701
.10.1016/j.actamat.2012.01.035
52.
Zhang
,
L.
, and
Steinbach
,
I.
,
2012
, “
Phase-Field Model With Finite Interface Dissipation: Extension to Multi-Component Multi-Phase Alloys
,”
Acta Mater.
,
60
(
6–7
), pp.
2702
2710
.10.1016/j.actamat.2012.02.032
53.
Fernandez-Zelaia
,
P.
,
Yabansu
,
Y. C.
, and
Kalidindi
,
S. R.
,
2019
, “
A Comparative Study of the Efficacy of Local/Global and Parametric/Nonparametric Machine Learning Methods for Establishing Structure–Property Linkages in High-Contrast 3D Elastic Composites
,”
Integrat. Mater. Manuf. Innov.
,
8
(
2
), pp.
67
15
.10.1007/s40192-019-00129-4
54.
Kalidindi
,
S. R.
,
2019
, “
A Bayesian Framework for Materials Knowledge Systems
,”
MRS Commun.
,
9
(
2
), pp.
518
14
.10.1557/mrc.2019.56
55.
Stevens
,
G.
,
Atamturktur
,
S.
,
Lebensohn
,
R.
, and
Kaschner
,
G.
,
2016
, “
Experiment-Based Validation and Uncertainty Quantification of Coupled Multi-Scale Plasticity Models
,”
Multidis. Model. Mater. Struct.
,
12
(
1
), pp.
151
176
.10.1108/MMMS-04-2015-0023
56.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Processes for Machine Learning
,
The MIT Press
,
Cambridge, MA
.
57.
Ghanem
,
R.
,
Higdon
,
D.
, and
Owhadi
,
H.
,
2017
,
Handbook of Uncertainty Quantification
,
Springer
, New York.
58.
Nielsen
,
T. D.
, and
Jensen
,
F. V.
,
2009
,
Bayesian Networks and Decision Graphs
,
Springer
, New York.
59.
Duane
,
S.
,
Kennedy
,
A.
,
Pendleton
,
B. J.
, and
Roweth
,
D.
,
1987
, “
Hybrid Monte Carlo
,”
Phys. Lett. B
,
195
(
2
), pp.
216
222
.10.1016/0370-2693(87)91197-X
60.
Keller
,
T.
,
Lindwall
,
G.
,
Ghosh
,
S.
,
Ma
,
L.
,
Lane
,
B. M.
,
Zhang
,
F.
,
Kattner
,
U. R.
,
Lass
,
E. A.
,
Heigel
,
J. C.
,
Idell
,
Y.
,
Williams
,
M. E.
,
Allen
,
A. J.
,
Guyer
,
J. E.
, and
Levine
,
L. E.
,
2017
, “
Application of Finite Element, Phase-Field, and Calphad-Based Methods to Additive Manufacturing of ni-Based Superalloys
,”
Acta Mater.
,
139
, pp.
244
253
.10.1016/j.actamat.2017.05.003
61.
Rasband
,
W.
,
1997
,
ImageJ.
Us National Institutes of Health
,
Bethesda, MD
.
62.
Byrd
,
R. H.
,
Lu
,
P.
,
Nocedal
,
J.
, and
Zhu
,
C.
,
1995
, “
A Limited Memory Algorithm for Bound Constrained Optimization
,”
SIAM J. Sci. Comput.
,
16
(
5
), pp.
1190
1208
.10.1137/0916069
63.
Boluki
,
S.
,
Esfahani
,
M. S.
,
Qian
,
X.
, and
Dougherty
,
E. R.
,
2017
, “
Incorporating Biological Prior Knowledge for Bayesian Learning Via Maximal Knowledge-Driven Information Priors
,”
BMC Bioinform.
,
18
(
S14
), p.
1
.10.1186/s12859-017-1893-4
64.
Boluki
,
S.
,
Esfahani
,
M. S.
,
Qian
,
X.
, and
Dougherty
,
E. R.
,
2017
, “
Constructing Pathway-Based Priors Within a Gaussian Mixture Model for Bayesian Regression and Classification
,”
IEEE/ACM Trans. Comput. Biol. Bioinform.
,
16
(
2
), pp.
524
537
.10.1109/TCBB.2017.2778715
65.
Owen
,
A. B.
,
2013
, “
Variance Components and Generalized Sobol' Indices
,”
SIAM/ASA J. Uncertainty Quantif.
,
1
(
1
), pp.
19
41
.10.1137/120876782
You do not currently have access to this content.