Abstract

Safety analysis is a significant step for safety-critical system development. Compared with traditional vehicles, the system interactions for autonomous vehicles are more abundant and complex. Traditional hazard analysis methods, such as failure mode and effects analysis (FMEA) and fault tree analysis (FTA) which are based on the component failure and reliability theory, cannot identify the system hazards related to system interactions. An emerging hazard analysis method based on systems theory, systems theory process analysis (STPA) mainly focuses on identifying the control system hazards caused by system interactions. In this study, STPA method is used to identify the potential hazards and casual factors for autonomous emergency braking systems by concentrating on system interactions. To improve the consistency between system design and safety analysis, the workflow combining model-based systems engineering (MBSE) and STPA is proposed. The systems modeling language (SysML) is used to describe control structure and system interaction relationships. According to the identified casual factors, certain constraints and requirements can be derived, which can provide the guidance for system development with respect to system design. Furthermore, the quantitative analysis of certain unsafe control action is conducted by simulation, which shows effectiveness and feasibility of the proposed method in safety analysis and system design.

References

1.
Dhaka,
2018
,
Global Status Report on Road Safety
,
World Health Organization, Bangladesh
.
2.
Singh
,
S.
,
2015
, “
Critical Reasons for Crashes Investigated in the National Motor Vehicle Crash Causation Survey
,”
Traffic Safety Facts - Crash Stats
,
National Center for Statistics and Analysis, Washington, DC
.
3.
Keller
,
C. G.
,
Dang
,
T.
,
Fritz
,
H.
,
Joos
,
A.
,
Rabe
,
C.
, and
Gavrila
,
D. M.
,
2011
, “
Active Pedestrian Safety by Automatic Braking and Evasive Steering
,”
IEEE Trans. Intell. Transp. Syst.
,
12
(
4
), pp.
1292
1304
.10.1109/TITS.2011.2158424
4.
Liu
,
Y.
,
Zhao
,
Y.
,
Hu
,
Z.
,
Mourelatos
,
Z. P.
, and
Papadimitriou
,
D.
,
2019
, “
Collision-Avoidance Reliability Analysis of Automated Vehicle Based on Adaptive Surrogate Modeling
,”
ASCE-ASME J. Risk Uncertainty, Part B
,
5
(
2
), p.
020906
.10.1115/1.4042974
5.
Miholjcic
,
D.
,
Fabbroni
,
M.
, and
Robinson
,
R.
, “
A Study of the Performance of Automatic Emergency Braking (AEB) Systems Equipped on Passenger Vehicles for Model Years 2013 to 2018
,”
SAE
Paper No. 2019-01-0416. 10.4271/2019-01-0416
6.
Sander
,
U.
, and
Lubbe
,
N.
,
2018
, “
Market Penetration of Intersection AEB: Characterizing Avoided and Residual Straight Crossing Path Accidents
,”
Accident Anal. Prev.
,
115
, pp.
178
188
.10.1016/j.aap.2018.03.025
7.
Aslund
,
J.
,
Biteus
,
J.
,
Frisk
,
E.
,
Krysander
,
M.
, and
Nielsen
,
L.
,
2007
, “
Safety Analysis of Autonomous Systems by Extended Fault Tree Analysis
,”
Int. J. Adaptive Control Signal Process.
,
21
(
2–3
), pp.
287
298
.10.1002/acs.934
8.
SAE International Ground Vehicle Standard J3016_202104
“Taxonomy and Definitions for Terms Related to Driving Automation Systems for on-Road Motor Vehicles.”
9.
International Standardization Organization,
2018
, “
Road Vehicles-Functional Safety
,” ISO 26262:2018.
10.
Mader
,
R.
,
Armengaud
,
E.
,
Grießnig
,
G.
,
Kreiner
,
C.
,
Steger
,
C.
, and
Weiß
,
R.
,
2013
, “
OASIS: An Automotive Analysis and Safety Engineering Instrument
,”
Reliab. Eng. Syst. Saf.
,
120
, pp.
150
162
.10.1016/j.ress.2013.06.045
11.
Xu
,
K.
,
Tang
,
L. C.
,
Xie
,
M.
,
Ho
,
S. L.
, and
Zhu
,
M. L.
,
2002
, “
Fuzzy Assessment of FMEA for Engine Systems
,”
Reliab. Eng. Syst. Saf.
,
75
(
1
), pp.
17
29
.10.1016/S0951-8320(01)00101-6
12.
Yi
,
X.-J.
,
Dhillon
,
B. S.
,
Shi
,
J.
,
Mu
,
H.-N.
, and
Zhang
,
Z.
,
2017
, “
A New Reliability Analysis Method for Vehicle Systems Based on Goal-Oriented Methodology
,”
Proc. Inst. Mech. Eng., Part D: J. Automobile Eng.
,
231
(
8
), pp.
1066
1095
.10.1177/0954407016671276
13.
Levitin
,
G.
,
Xing
,
L.
,
Haim
,
H. B.
, and
Dai
,
Y.
,
2019
, “
Optimal Structure of Series System With 1-Out-of-n Warm Standby Subsystems Performing Operation and Rescue Functions
,”
Reliab. Eng. Syst. Saf.
,
188
, pp.
523
531
.10.1016/j.ress.2019.04.005
14.
Khodayari
,
A.
,
Ghaffari
,
A.
,
Ameli
,
S.
, and
Flahatgar
,
J.
,
2010
, “
A Historical Review on Lateral and Longitudinal Control of Autonomous Vehicle Motions
,”
Proc. 2010 International Conference on Mechanical and Electrical Technology
,
IEEE, Singapore
, Sept. 10–12, pp.
421
429
.10.1109/ICMET.2010.5598396
15.
Leveson
,
N.
,
2004
, “
A New Accident Model for Engineering Safer Systems
,”
Saf. Science
,
42
(
4
), pp.
237
270
.10.1016/S0925-7535(03)00047-X
16.
Leveson
,
N.
,
2015
, “
A Systems Approach to Risk Management Through Leading Safety Indicators
,”
Reliab. Eng. Syst. Saf.
,
136
, pp.
17
34
.10.1016/j.ress.2014.10.008
17.
Read
,
G. J.
,
Naweed
,
A.
, and
Salmon
,
P.
,
2019
, “
Complexity on the Rails: A Systems-Based Approach to Understanding Safety Management in Rail Transport
,”
Reliab. Eng. Syst. Saf.
,
188
, pp.
352
365
.10.1016/j.ress.2019.03.038
18.
Banda
,
O. A. V.
,
Kannos
,
S.
,
Goerlandt
,
F.
,
van Gelder
,
P. H.
,
Bergström
,
M.
, and
Kujala
,
P.
,
2019
, “
A Systemic Hazard Analysis and Management Process for the Concept Design Phase of an Autonomous Vessel
,”
Reliab. Eng. Syst. Saf.
,
191
, p.
106584
10.1016/j.ress.2019.106584
19.
Wróbel
,
K.
,
Montewka
,
J.
, and
Kujala
,
P.
,
2018
, “
Towards the Development of a System-Theoretic Model for Safety Assessment of Autonomous Merchant Vessels
,”
Reliab. Eng. Syst. Saf.
,
178
, pp.
209
224
.10.1016/j.ress.2018.05.019
20.
Chen
,
Y.
,
Hou
,
Y.
,
Peterson
,
A.
, and
Ahmadian
,
M.
,
2019
, “
Failure Mode and Effects Analysis of Dual Levelling Valve Airspring Suspensions on Truck Dynamics
,”
Veh. System Dynamics
,
57
(
4
), pp.
617
635
.10.1080/00423114.2018.1480787
21.
Peeters
,
J.
,
Basten
,
R. J.
, and
Tinga
,
T.
,
2018
, “
Improving Failure Analysis Efficiency by Combining FTA and FMEA in a Recursive Manner
,”
Reliab. Eng. Syst. Saf.
,
172
, pp.
36
44
.10.1016/j.ress.2017.11.024
22.
Harkleroad
,
E.
,
Vela
,
A.
, and
Kuchar
,
J. J. L.
,
2013
, “Review of Systems-Theoretic Process Analysis (STPA) Method and Results to Support NextGen Concept Assessment and Validation.”
Project Report
: ATC-427, MIT, Lincoln Laboratory, Washington, DC, Oct. 25.https://www.ll.mit.edu/sites/default/files/publication/doc/2018-12/Harkleroad_2013_ATC-427.pdf
23.
Melani
,
A. H. D. A.
, and
de Souza
,
G. F. M.
,
2020
, “
Mapping SysML Diagrams Into Bayesian Networks: A Systems Engineering Approach for Fault Diagnosis
,”
ASCE-ASME J. Risk Uncertainty, Part B
,
6
(
3
), p.
031003
.10.1115/1.4045975
24.
S
,
F.
,
R
,
G.
, and
M
,
S.
,
2007
, “
INCOSE Model Based Systems Engineering (MBSE) Initiative
,”
INCOSE 2007 Symposium 2007,
Vol. 11.
25.
Ishimatsu
,
T.
,
Leveson
,
N. G.
,
Thomas
,
J.
,
Katahira
,
M.
, and
Nakao
,
H.
, “
Modeling and Hazard Analysis Using STPA
,”
Proc. Proceedings of the 4th Conference of the International Association for the Advancement of Space Safety
(
IAASS
), Making Safety Matter, Huntsville, AL, May 19–21, SP-680 (September 2010).http://iaass.space-safety.org/wpcontent/uploads/sites/24/2012/12/contents_SP680.pdf
26.
Leveson
,
N. G.
,
2011
, “
Applying Systems Thinking to Analyze and Learn From Events
,”
Saf. Sci.
,
49
(
1
), pp.
55
64
.10.1016/j.ssci.2009.12.021
27.
Sulaman
,
S. M.
,
Beer
,
A.
,
Felderer
,
M.
, and
Höst
,
M.
,
2019
, “
Comparison of the FMEA and STPA Safety Analysis Methods–A Case Study
,”
Software Qual. J.
,
27
(
1
), pp.
349
387
.10.1007/s11219-017-9396-0
28.
Kölln
,
G. C.
,
Klicker
,
M.
, and
Schmidt
,
S.
, “
Comparison of Hazard analysis methods With Regard to the Series Development of Autonomous Vehicles
,”
Proc. 2019 IEEE Intelligent Transportation Systems Conference (ITSC
), IEEE, Auckland, New Zealand, Oct. 27–30, pp.
2969
2975.
29.
Leveson
,
N.
,
Wilkinson
,
C.
,
Fleming
,
C.
,
Thomas
,
J.
, and
Tracy
,
I.
,
2014
, “
A Comparison of STPA and the ARP 4761 Safety Assessment Process
,” MIT PSAS Technical Report, pp.
45
67
.
30.
Thapaliya
,
A.
, and
Kwon
,
G.
,
2017
, “
Reliability and Control Theory: An Integration Approach for Safety Analysis
,”
Advances in Computer Science and Ubiquitous Computing
,
Springer
, Singapore, pp.
1244
1249
.
31.
La
,
N.-T.
, and
Kwon
,
G.
, “
Risk Assessment for STPA With FMEA Technique
,”
Proc. International Conference on Frontier Computing
,
Springer
, Suwon, South Korea, pp.
444
455
.
32.
La-Ngoc
,
T.
, and
Kwon
,
G.
,
2017
, “
Comparing the Effectiveness of SFMEA and STPA in Software-Intensive Railway Level Crossing System
,”
Advances in Computer Science and Ubiquitous Computing
,
Springer
, Singapore, pp.
1281
1288
.
33.
International Council on Systems Engineering (INCOSE)
,
2014
, “
SE Vision 2025
,” accessed July 22, 2021, https://www.incose.org/products-and-publications/se-vision-2025
34.
Friedenthal
,
S.
,
Moore
,
A.
, and
Steiner
,
R.
,
2006
, “
Omg Systems Modeling Language (Omg Sysml™) Tutorial
,”
INCOSE Intl Symp
, Singapore.
35.
Guo
,
K.
,
Yan
,
Y.
,
Shi
,
J.
,
Guo
,
R.
, and
Liu
,
Y.
,
2017
, “
An Investigation Into C-NCAP AEB System Assessment Protocol
,”
SAE
Paper No. 2017-01-2009. 10.4271/2017-01-2009
36.
Chen
,
W.
,
Xiao
,
H.
,
Wang
,
Q.
,
Zhao
,
L.
, and
Zhu
,
M.
,
2016
,
Longitudinal Vehicle Dynamics and Control
,
Wiley Singapore Pvt Ltd
., Singapore.
37.
Sui
,
B.
,
Ding
,
C.
,
Fredriksson
,
R.
,
Zhou
,
S.
, and
Zhao
,
X.
, “
Vehicle-to-Vehicle Rear Crashes in China-a Study of Accident Characteristics to Provide Input to Active Safety System Design
,”
Eighth International Conference on Measuring Technology and Mechatronics Automation
(
ICMTMA
), Macau, China, Mar. 11–12, pp.
889
896
.
10.1109/ICMTMA.2016.214
You do not currently have access to this content.