Abstract

As autonomous vehicle (AV) intelligence for controllability continues to develop, involving increasingly complex and interconnected systems, the maturity level of AV technology increasingly depends on the systems reliability level, also considering the interactions among them. Hazard analysis is typically used to identify potential system risks and avoid loss of AV system functionality. Conventional hazard analysis methods are commonly used for traditional standalone systems. New hazard analysis methods have been developed that may be more suitable for AV system-of-systems complexity. However, a comprehensive comparison of hazard analysis methods for AV systems is lacking. In this study, the traditional hazard analysis methods, hazard and operability (HAZOP) and failure mode and effects analysis (FMEA), as well as the most recent methods, like functional resonance analysis method (FRAM) and system-theoretic process analysis (STPA), are considered for implementation in the automatic emergency braking system. This system is designed to avoid collisions by utilizing the surrounding sensors to detect objects on the road, warning drivers with alerts about any collision risk, and actuating automatic partial/full braking through calculated adaptive braking deceleration. The objective of this work is to evaluate the methods with the unified theory of acceptance and use of technology (UTAUT) approach, in terms of their applicability to AV technologies. The advantages of HAZOP, FMEA, FRAM, and STPA, as well as the possibility of combining them to achieve systematic risk identification in practice, are discussed.

References

1.
Hollnagel
,
E.
,
2012
,
FRAM: The Functional Resonance Analysis Method Modelling Complex Socio-Technical Systems
,
CRC Press
, Boca Raton, FL.
2.
N. G
,
L.
,
2011
, “
STPA: A New Hazard Analysis Technique
,”
Engineering a Safer World: Systems Thinking Applied to Safety
, MIT Press, Cambridge, MA, pp.
211
249
.
3.
Venkatesh
,
V.
,
Morris
,
M. G.
,
Davis
,
G. B.
, and
Davis
,
F. D.
,
2003
, “
User Acceptance of Information Technology: Toward a Unified View
,”
Mis Q.
,
27
(
3
), pp.
425
478
.10.2307/30036540
4.
Smith
,
D.
,
Veitch
,
B.
,
Khan
,
F.
, and
Taylor
,
R.
,
2017
, “
Understanding Industrial Safety: Comparing Fault Tree, Bayesian Network, and FRAM Approaches
,”
J. Loss Prev. Process Ind.
,
45
, pp.
88
101
.10.1016/j.jlp.2016.11.016
5.
Silva
,
R. F. D.
, and
Carvalho
,
M. A. D.
,
2019
, “
Anticipatory Failure Determination (AFD) for Product Reliability Analysis: A Comparison Between AFD and Failure Mode and Effects Analysis (FMEA) for Identifying Potential Failure Modes
,”
Advances In Systematic Creativity—Creating and Managing Innovations
, Vol.
11
,
M. C.
Leonid Chechurin
, ed.,
Springer Nature Switzerland AG
,
Cham, Switzerland
, pp.
181
200
.
6.
Bensaci
,
C.
,
Zennir
,
Y.
, and
Pomorski
,
D.
,
2018
, “A Comparative Study STPA Hierarchical Structures in Risk Analysis: The Case a Complex Multi-Robot Mobile System,” Second European Conference on Electrical Engineering and Computer Science (
EECS
), Bern, Switzerland, Dec.
20
22
.10.1109/EECS.2018.00080
7.
Koelln
,
G. C.
,
Klicker
,
M.
, and
Schmidt
,
S.
, and
2019
, “
Comparison of Hazard Analysis Methods With Regard to the Series Development of Autonomous Vehicles
,”
IEEE Intelligent Transportation Systems Conference
,
IEEE International Conference on Intelligent Transportation Systems-ITSC
, Auckland, New Zealand, Oct. 27–30, pp.
2969
2975
.10.1109/ITSC.2019.8916932
8.
Das
,
P.
,
Benneyan
,
J.
,
Powers
,
L.
,
Carmody
,
M.
,
Kerwin
,
J.
, and
Singer
,
S.
,
2018
, “
Engineering Safer Care Coordination From Hospital to Home: Lessons From the USA
,”
Future Healthcare J.
,
5
(
3
), pp.
164
170
.10.7861/futurehosp.5-3-164
9.
Stanton
,
N. A.
,
Salmon
,
P. M.
,
Walker
,
G. H.
, and
Stanton
,
M.
,
2019
, “
Models and Methods for Collision Analysis: A Comparison Study Based on the Uber Collision With a Pedestrian
,”
Saf. Sci.
,
120
, pp.
117
128
.10.1016/j.ssci.2019.06.008
10.
Yousefi
,
A.
,
Hernandez
,
M. R.
, and
Pena
,
V. L.
,
2019
, “
Systemic Accident Analysis Models: A Comparison Study Between AcciMap, FRAM, and STAMP
,”
Process Saf. Prog.
,
38
(
2
), p.
e12002
.10.1002/prs.12002
11.
Koelln
,
G.
,
Klicker
,
M.
, and
Schmidt
,
S.
,
2020
, “
Comparison of the Results of the System Theoretic Process Analysis for a Vehicle SAE Level Four and Five
,” Rhodes, Greece, Sept. 20–23, INSPEC Accession No.
20303278
.10.1109/ITSC45102.2020.9294248
12.
Duran
,
D. R.
,
Robinson
,
E.
,
Kornecki
,
A. J.
, and
Zalewski
,
J.
,
2013
, “
Safety Analysis of Autonomous Ground Vehicle Optical Systems: Bayesian Belief Networks Approach
,”
Federated Conference on Computer Science and Information Systems
, Krakow, Poland, Sept. 8–11, pp.
1419
1425
.https://annals-csis.org/Volume_1/pliks/354.pdf
13.
Warg
,
F.
,
Gassilewski
,
M.
,
Tryggvesson
,
J.
,
Izosimov
,
V.
,
Werneman
,
A.
, and
Johansson
,
R.
,
2016
, “
Defining Autonomous Functions Using Iterative Hazard Analysis and Requirements Refinement
,”
Computer Safety, Reliability, and Security, Safecomp 2016, Lecture Notes in Computer Science
, Trondheim, Norway, Sept. 20–23, pp.
286
297
.10.1007/978-3-319-45480-1_23
14.
Stolte
,
T.
,
Bagschik
,
G.
,
Reschka
,
A.
, and
Maurer
,
M.
,
2017
, “
Hazard Analysis and Risk Assessment for an Automated Unmanned Protective Vehicle
,”
28th IEEE Intelligent Vehicles Symposium
, Los Angeles, CA, June 11–14, pp.
1848
1855
.https://www.researchgate.net/publication/316283160_Hazard_Analysis_and_Risk_Assessment_for_an_Automated_Unmanned_Protective_Vehicle
15.
Abdulkhaleq
,
A.
,
Lammering
,
D.
,
Wagner
,
S.
,
Roder
,
J.
,
Balbierer
,
N.
,
Ramsauer
,
L.
,
Raste
,
T.
, and
Boehmert
,
H.
,
2017
, “
A Systematic Approach Based on STPA for Developing a Dependable Architecture for Fully Automated Driving Vehicles
,”
4th European Stamp Workshop 2016, Esw 2016
, Zurich, Switzerland, Sept. 13–15, Vol. 179, pp. 6
41
51
.10.1016/j.proeng.2017.03.094
16.
Habib
,
K.
,
2017
, “
The Automatic Emergency Braking (AEB) or Autopilot Systems May Not Function as Designed, Increasing the Risk of a Crash
,” U.S. Dept. Transportation, Report No. PE
16
007
.
17.
Griffiths
,
R. F.
,
1984
, “
Hazop and Hazan - Notes on the Identification and Assessment of Hazards—Kletz,Ta
,”
J. Hazard. Mater.
,
8
(
4
), pp.
385
386
.10.1016/0304-3894(84)87040-5
18.
Ahn
,
J.
, and
Chang
,
D.
,
2016
, “
Fuzzy-Based HAZOP Study for Process Industry
,”
J. Hazard. Mater.
,
317
, pp.
303
311
.10.1016/j.jhazmat.2016.05.096
19.
Single
,
J. I.
,
Schmidt
,
J.
, and
Denecke
,
J.
,
2019
, “
State of Research on the Automation of HAZOP Studies
,”
J. Loss Prev. Process Ind.
,
62
, p.
103952
.10.1016/j.jlp.2019.103952
20.
Cheraghi
,
M.
,
Eslami Baladeh
,
A.
, and
Khakzad
,
N.
,
2019
, “
A Fuzzy Multi-Attribute HAZOP Technique (FMA-HAZOP): Application to Gas Wellhead Facilities
,”
Saf. Sci.
,
114
, pp.
12
22
.10.1016/j.ssci.2018.12.024
21.
Marhavilas
,
P. K.
,
Filippidis
,
M.
,
Koulinas
,
G. K.
, and
Koulouriotis
,
D. E.
,
2020
, “
An Expanded HAZOP-Study With Fuzzy-AHP (XPA-HAZOP Technique): Application in a Sour Crude-Oil Processing Plant
,”
Saf. Sci.
,
124
, p.
104590
.10.1016/j.ssci.2019.104590
22.
Othman
,
M. R.
,
Idris
,
R.
,
Hassim
,
M. H.
, and
Ibrahim
,
W. H. W.
,
2016
, “
Prioritizing HAZOP Analysis Using Analytic Hierarchy Process (AHP)
,”
Clean Technol. Environ. Policy
,
18
(
5
), pp.
1345
1360
.10.1007/s10098-016-1104-4
23.
Marhavilas
,
P. K.
,
Filippidis
,
M.
,
Koulinas
,
G. K.
, and
Koulouriotis
,
D. E.
,
2019
, “
The Integration of HAZOP Study With Risk-Matrix and the Analytical-Hierarchy Process for Identifying Critical Control-Points and Prioritizing Risks in industry—A Case Study
,”
J. Loss Prev. Process Ind.
,
62
, p.
103981
.10.1016/j.jlp.2019.103981
24.
Guiochet
,
J.
,
2016
, “
Hazard Analysis of Human-Robot Interactions With HAZOP-UML
,”
Saf. Sci.
,
84
, pp.
225
237
.10.1016/j.ssci.2015.12.017
25.
Akyildiz
,
H.
, and
Mentes
,
A.
,
2017
, “
An Integrated Risk Assessment Based on Uncertainty Analysis for Cargo Vessel Safety
,”
Saf. Sci.
,
92
, pp.
34
43
.10.1016/j.ssci.2016.09.009
26.
Li
,
K. C.
,
Yao
,
X. F.
,
Chen
,
D. W.
,
Yuan
,
L.
, and
Zhou
,
D. T.
,
2015
, “
HAZOP Study on the CTCS-3 Onboard System
,”
IEEE Trans. Intell. Transp. Syst.
,
16
(
1
), pp.
162
171
.10.1109/TITS.2014.2329692
27.
European Safety and Reliability Conference, 2018, Trondheim, Norway, June 17–21, Paper No. 686.
28.
Isimite
,
J.
, and
Rubini
,
P.
,
2016
, “
A Dynamic HAZOP Case Study Using the Texas City Refinery Explosion
,”
J. Loss Prev. Process Ind.
,
40
, pp.
496
501
.10.1016/j.jlp.2016.01.025
29.
Banick
,
W. R.
, and
Wei
,
C.
,
2017
, “
Advanced Analysis to Supplement HAZOP/LOPA for Effective Process Design
,”
Process Saf. Prog.
,
36
(
2
), pp.
192
201
.10.1002/prs.11855
30.
Wu
,
Q. K.
,
Gan
,
X. S.
,
Yao
,
D. K.
, and
Sun
,
Q. R.
,
2016
, “
Fault Tree Establishment of Flight Conflict Based on the HAZOP Method
,”
Proceedings of the Fourth International Conference on Machinery, Materials and Computing Technology
, Vol.
60
, Hangzhou, China, Jan. 23–24, pp.
1588
1593
.10.2991/icmmct-16.2016.316
31.
Giardina
,
M.
, and
Morale
,
M.
,
2015
, “
Safety Study of an LNG Regasification Plant Using an FMECA and HAZOP Integrated Methodology
,”
J. Loss Prev. Process Ind.
,
35
, pp.
35
45
.10.1016/j.jlp.2015.03.013
32.
U.S. Department of Defense. 1949, Military Procedure MIL-P-1629
, “Procedures for Performing a Failure Mode Effect and Critical Analysis”.
33.
Arevalo
,
F.
,
Sunaringtyas
,
D.
,
Tito
,
C.
,
Piolo
,
C.
, and
Schwung
,
A.
,
2020
, “
Interactive Visual Procedure Using an Extended FMEA and Mixed-Reality
,” IEEE International Conference on Industrial Technology (
ICIT
), Buenos Aires, Argentina, Feb. 26–28, pp.
286
291
.10.1109/ICIT45562.2020.9067296
34.
Mascia
,
A.
,
Cirafici
,
A. M.
,
Bongiovanni
,
A.
,
Colotti
,
G.
,
Lacerra
,
G.
,
Carlo
,
M. D.
,
Digilio
,
F. A.
,
Liguori
,
G. L.
,
Lanati
,
A.
, and
Kisslinger
,
A.
,
2020
, “
A Failure Mode and Effect Analysis (FMEA)-Based Approach for Risk Assessment of Scientific Processes in Non-Regulated Research Laboratories
,”
Accred. Qual. Assur.
,
25
(
5–6
), pp.
311
321
.10.1007/s00769-020-01441-9
35.
Sotoodeh
,
K.
,
2020
, “
Failure Mode and Effect Analysis (FMEA) of Pipeline Ball Valves in the Offshore Industry
,”
J. Failure Anal. Prev.
,
20
(
4
), pp.
1175
1183
.10.1007/s11668-020-00924-8
36.
Xu
,
Z. G.
,
Dang
,
Y. H.
,
Munro
,
P.
, and
Wang
,
Y. H.
,
2020
, “
A Data-Driven Approach for Constructing the Component-Failure Mode Matrix for FMEA
,”
J. Intell. Manuf.
,
31
(
1
), pp.
249
265
.10.1007/s10845-019-01466-z
37.
Carnero
,
M. C.
,
2020
, “
Waste Segregation FMEA Model Integrating Intuitionistic Fuzzy Set and the PAPRIKA Method
,”
Mathematics
,
8
(
8
), p.
1375
.10.3390/math8081375
38.
Fattahi
,
R.
,
Tavakkoli-Moghaddam
,
R.
,
Khalilzadeh
,
M.
,
Shahsavari-Pour
,
N.
, and
Soltani
,
R.
,
2020
, “
A Novel FMEA Model Based on Fuzzy Multiple-Criteria Decision-Making Methods for Risk Assessment
,”
J. Enterprise Inf. Manage.
,
33
(
5
), pp.
881
904
.10.1108/JEIM-09-2019-0282
39.
Panyukov
,
D.
,
Kozlovsky
,
V.
, and
Klochkov
,
Y.
,
2020
, “
Development and Research FMEA Expert Team Model
,”
Int. J. Reliab. Qual. Saf. Eng.
, 27(5), p. 2040015.10.1142/S021853932040015X
40.
Rassiah
,
P.
,
Su
,
F. C. F.
,
Huang
,
Y. J.
,
Spitznagel
,
D.
,
Sarkar
,
V.
,
Szegedi
,
M. W.
,
Zhao
,
H.
,
Paxton
,
A. B.
,
Nelson
,
G.
, and
Salter
,
B. J.
,
2020
, “
Using Failure Mode and Effects Analysis (FMEA) to Generate an Initial Plan Check Checklist for Improved Safety in Radiation Treatment
,”
J. Appl. Clin. Med. Phys.
,
21
(
8
), pp.
83
91
.10.1002/acm2.12918
41.
Cheng
,
P. F.
,
Li
,
D. P.
,
He
,
J. Q.
,
Zhou
,
X. H.
,
Wang
,
J. Q.
, and
Zhang
,
H. Y.
,
2020
, “
Evaluating Surgical Risk Using FMEA and MULTIMOORA Methods Under a Single-Valued Trapezoidal Neutrosophic Environment
,”
Risk Manage. Healthcare Policy
,
13
, pp.
865
881
.10.2147/RMHP.S243331
42.
de Carvalho
,
E. A.
,
Gomes
,
J. O.
,
Jatoba
,
A.
,
da Silva
,
M. F.
, and
de Carvalho
,
P. V. R.
,
2020
, “Employing Resilience Engineering in Eliciting Software Requirements for Complex Systems: Experiments With the Functional Resonance Analysis Method (
FRAM
),” Cognition Technology & Work, Springer Nature, Switzerland.10.1007/s10111-019-00620-0
43.
Franca
,
J. E. M.
,
Hollnagel
,
E.
,
dos Santos
,
I. J. A. L.
, and
Haddad
,
A. N.
,
2020
, “
Analysing Human Factors and Non-Technical Skills in Offshore Drilling Operations Using FRAM (Functional Resonance Analysis Method)
,”
Cognition Technology & Work
, Springer Nature, Switzerland.10.1007/s10111-020-00638-9
44.
Riccardo
,
P.
,
Gianluca
,
D.
,
Giulio
,
D.
, and
Francesco
,
C.
,
2018
, “
FRAM for Systemic Accident Analysis: A Matrix Representation of Functional Resonance
,”
Int. J. Reliab. Qual. Saf. Eng.
, 25(1), p.
1850001
.10.1142/S0218539318500018
45.
Qiao
,
W. G.
,
Li
,
X. C.
, and
Liu
,
Q. L.
,
2019
, “
Systemic Approaches to Incident Analysis in Coal Mines: Comparison of the STAMP, FRAM and “2-4” Models
,”
Resour. Policy
,
63
, p.
101453
.10.1016/j.resourpol.2019.101453
46.
Salihoglu
,
E.
, and
Bal Beşikçi
,
E.
,
2021
, “
The Use of Functional Resonance Analysis Method (FRAM) in a Maritime Accident: A Case Study of Prestige
,”
Ocean Eng.
,
219
, p.
108223
.10.1016/j.oceaneng.2020.108223
47.
Pardo-Ferreira
,
M. C.
,
Martínez-Rojas
,
M.
,
Salguero-Caparrós
,
F.
, and
Rubio-Romero
,
J. C.
,
2019
, “
Evolution of the Functional Resonance: Analysis Method (FRAM) Through the Combination With Other Methods
,”
Direccion Y Organizacion
,
68
, pp.
41
50
.10.37610/dyo.v0i68.550
48.
Hirose
,
T.
, and
Sawaragi
,
T.
,
2019
, “
Development of FRAM Model Based on Structure of Complex Adaptive Systems to Visualize Safety of Socio-Technical Systems
,”
IFAC Papersonline
,
52
(
19
), pp.
13
18
.10.1016/j.ifacol.2019.12.075
49.
Furniss
,
D.
,
Nelson
,
D.
,
Habli
,
I.
,
White
,
S.
,
Elliott
,
M.
,
Reynolds
,
N.
, and
Sujan
,
M.
,
2020
, “
Using FRAM to Explore Sources of Performance Variability in Intravenous Infusion Administration in ICU: A Non-Normative Approach to Systems Contradictions
,”
Appl. Ergonom.
,
86
, p.
103113
.10.1016/j.apergo.2020.103113
50.
Scarinci
,
A.
,
Quilici
,
A.
,
Ribeiro
,
D.
,
Oliveira
,
F.
,
Patrick
,
D.
, and
Leveson
,
N. G.
,
2019
, “
Requirement Generation for Highly Integrated Aircraft Systems Through STPA: An Application
,”
J. Aerosp. Inf. Syst.
,
16
(
1
), pp.
9
21
.10.2514/1.I010602
51.
Castilho
,
D. S.
,
Urbina
,
L. M. S.
, and
de Andrade
,
D.
,
2018
, “
STPA for Continuous Controls: A Flight Testing Study of Aircraft Crosswind Takeoffs
,”
Saf. Sci.
,
108
, pp.
129
139
.10.1016/j.ssci.2018.04.013
52.
Chen
,
J. Y.
,
Lu
,
Y.
,
Zhang
,
S. G.
, and
Tang
,
P.
,
2015
, “
STPA-Based Hazard Analysis of a Complex UAV System in Take-Off
,”
Third International Conference on Transportation Information and Safety (
ICTIS 2015
), Wuhan, China, June 25–28, pp.
774
779
.10.1109/ICTIS.2015.7232133
53.
Plioutsias
,
A.
, and
Karanikas
,
N.
,
2015
, “
Using STPA in the Evaluation of Fighter Pilots Training Programs
,”
Proceedings of the Third European Stamp Workshop
, Vol.
128
, Amsterdam, The Netherlands, Oct. 5–6, pp.
25
34
.10.1016/j.proeng.2015.11.501
54.
Meyen
,
F.
,
Krishnamurthy
,
A.
, and
Hoffman
,
J.
,
2018
, “
System Theoretic Process Analysis (STPA) of the Mars Oxygen ISRU Experiment (MOXIE)
,”
IEEE Aerospace Conference
, Big Sky, MT, Mar. 3–10, INSPEC Accession No. 17878255.10.1109/AERO.2018.8396586
55.
Sultana
,
S.
,
Okoh
,
P.
,
Haugen
,
S.
, and
Vinnem
,
J. E.
,
2019
, “
Hazard Analysis: Application of STPA to Ship-to-Ship Transfer of LNG
,”
J. Loss Prev. Process Ind.
,
60
, pp.
241
252
.10.1016/j.jlp.2019.04.005
56.
Wrobel
,
K.
,
Gil
,
M.
, and
Montewka
,
J.
,
2018
, “
Towards a Method Evaluating Control Actions in Stpa-Based Model of Ship-Ship Collision Avoidance Process
,”
ASME
Paper No. OMAE-18-1137.10.1115/1.4042387
57.
La-Ngoc
,
T.
, and
Kwon
,
G.
,
2018
, “
Comparing the Effectiveness of SFMEA and STPA in Software-Intensive Railway Level Crossing System
,”
Adv. Comput. Sci. Ubiquitous Comput.
,
474
, pp.
1281
1288
.10.1007/978-981-10-7605-3
58.
Bas
,
E.
,
2020
, “
STPA Methodology in a Socio-Technical System of Monitoring and Tracking Diabetes Mellitus
,”
Appl. Ergonom.
,
89
, p.
103190
.10.1016/j.apergo.2020.103190
59.
Rejzek
,
M.
, and
Hilbes
,
C.
,
2018
, “
Use of STPA as a Diverse Analysis Method for Optimization and Design Verification of Digital Instrumentation and Control Systems in Nuclear Power Plants
,”
Nucl. Eng. Des.
,
331
, pp.
125
135
.10.1016/j.nucengdes.2018.02.030
60.
Nan
,
Q.
, and
Liang
,
M.
,
2019
, “
Safety Requirements Analysis for a Launching Control System Based on STPA
,” IEEE International Conference on Mechatronics and Automation (
ICMA
), Tianjin, China, Aug. 4–7, pp.
1201
1205
.10.1109/ICMA.2019.8816630
61.
BaumgartFroberg
,
S. J.
, and
Punnekkat
,
S.
,
2019
, “
A State-Based Extension to STPA for Safety-Critical System-of-Systems
,” Fourth International Conference on System Reliability and Safety (
ICSRS 2019
), Rome, Italy, Nov. 20–22, pp.
246
254
.10.1109/ICSRS48664.2019.8987632
62.
Dakwat
,
A. L.
, and
Villani
,
E.
,
2018
, “
System Safety Assessment Based on STPA and Model Checking
,”
Saf. Sci.
,
109
, pp.
130
143
.10.1016/j.ssci.2018.05.009
63.
Wang
,
Y.
, and
Wagner
,
S.
,
2018
, “
Combining STPA and BDD for Safety Analysis and Verification in Agile Development: A Controlled Experiment
,” Agile Processes in Software Engineering and Extreme Programming, Xp, Vol.
314
, Springer, Cham, Switzerland, pp.
37
53
.10.1007/978-3-319-91602-6
64.
Hirata
,
C.
, and
Nadjm-Tehrani
,
S.
,
2019
, “
Combining GSN and STPA for Safety Arguments
,” Computer Safety, Reliability, and Security, Safecomp, Vol.
11699
, Springer, Cham, Switzerland, pp.
5
15
.10.1007/978-3-030-26250-1_1
65.
Leveson
,
N. G.
, and
Thomas
,
J. P.
,
2018
,
STPA Handbook
, MIT Partnership for Systems Approaches to Safety and Security (PSASS) Materials, http://psas.scripts.mit.edu/home/materials/
66.
Shokohyar
,
S.
,
Tavallaee
,
R.
, and
Shobeiri
,
S. H.
,
2017
, The Human Factors Affecting the Acceptance of Business Intelligence Us Behavioral Ing the Behavioral Model of Reasoned Action Theory, 9th International Conference on Information and Knowledge Technology (
IKT
), Tehran, Iran, Oct.
18
19
.10.1109/IKT.2017.8258619
67.
Abbas
,
R. M.
,
Carroll
,
N.
, and
Richardson
,
I.
,
2018
, Technology We Trust: Extending TAM From a Healthcare Technology Perspective, IEEE International Conference on Healthcare Informatics (
ICHI
), New York, June
4
7
.10.1109/ICHI.2018.00051
68.
Al-Rahmi
,
W. M.
,
Yahaya
,
N.
,
Aldraiweesh
,
A. A.
,
Alamri
,
M. M.
,
Aljarboa
,
N. A.
,
Alturki
,
U.
, and
Aljeraiwi
,
A. A.
,
2019
, “
Integrating Technology Acceptance Model With Innovation Diffusion Theory: An Empirical Investigation on Students' Intention to Use E-Learning Systems
,”
IEEE Access
,
7
, pp.
26797
26809
.10.1109/ACCESS.2019.2899368
69.
Kettles
,
N.
, and
Van Belle
,
J. P.
,
2019
, Investigation into Antecedents Autonomous Car Acceptance Using an Enhanced UTAUT Model, International Conference on Advances in Big Data, Computing and Data Communication Systems (
icABCD
), Winterton, South Africa, Aug.
5
6
.10.1109/ICABCD.2019.8851011
70.
Venkatesh
,
V.
,
Sykes
,
T. A.
, and
Xiaojun
,
Z.
,
2011
, ‘Just What the Doctor Ordered’: A Revised UTAUT for EMR System Adoption and Use by Doctors,
44th Hawaii International Conference on System Sciences
, Kauai, HI, Jan.
4
7
.10.1109/HICSS.2011.1
71.
Dwivedi
,
Y. K.
,
Rana
,
N. P.
,
Jeyaraj
,
A.
,
Clement
,
M.
, and
Williams
,
M. D.
,
2019
, “
Re-Examining the Unified Theory of Acceptance and Use of Technology (UTAUT): Towards a Revised Theoretical Model
,”
Inf. Syst. Front.
,
21
(
3
), pp.
719
734
.10.1007/s10796-017-9774-y
72.
Davis
,
F. D.
,
1989
, “
Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology
,”
MIS Q.
,
13
(
3
), pp.
319
340
.10.2307/249008
73.
Venkatesh
,
V.
, and
Davis
,
F. D.
,
2000
, “
A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies
,”
Manage. Sci.
,
46
(
2
), pp.
186
204
.10.1287/mnsc.46.2.186.11926
74.
Ericson
,
C. A.
,
2005
,
Hazard Analysis Techniques for System Safety
, John Wiley & Sons, Inc., Hoboken, NJ.
75.
Project coordination: Deutsches Zentrum für Luft- und Raumfahrt e. V., Volkswagen AG
,
2020
,
Project Report: Projekt zur Etablierung von generell akzeptierten Gütekriterien, Werkzeugen und Methoden sowie Szenarien und Situationen zur Freigabe hochautomatisierter Fahrfunktionen
, Project Owner: German Federal Ministry for Economic Affairs and Energy (Bundesministerium für Wirtschaft und Energie-BMWi).
76.
Runeson
,
P.
, and
Höst
,
M.
,
2009
, “
Guidelines for Conducting and Reporting Case Study Research in Software Engineering
,”
Empirical Software Eng.
,
14
(
2
), pp.
131
164
.10.1007/s10664-008-9102-8
You do not currently have access to this content.