In the field of solar engineering the practical performance of solar energy conversion devices is generally evaluated strictly on an energy (first law) basis. However, the second law of thermodynamics determines the maximum work potential or exergy content of radiative fluxes independent of any conceptual device. The work in this paper quantifies the effect of directional and spectral distribution of terrestrial solar radiation (SR) on its exergy content. This is particularly important as the thermodynamic character of terrestrial SR is very different from that of blackbody radiation (BR). Exergetic (second law) efficiencies compare the work output of a device to the exergy content of the radiative source flux rather than its energy flux. As a result, exergetic efficiencies reveal that the performance of devices in practice is always better than what is indicated by the corresponding energy efficiency. The results presented in this paper introduce the benefits of using exergy analysis for solar cell design, performance evaluation and optimization.

1.
Bejan, A., 1997, Advanced Engineering Thermodynamics, 2nd edition, John Wiley and Sons, New York.
2.
Moran
,
M. J.
, and
Sciubba
,
E.
,
1994
, “
Exergy Analysis: Principles and Practice
,”
ASME J. Eng. Gas Turbines Power
,
116
, pp.
285
290
.
3.
Kotas, T. J., 1995, The Exergy Method of Thermal Plant Analysis, reprint ed., Krieger, Malabar, Florida.
4.
Rosen
,
M. A.
,
1999
, “
Second Law Analysis: Approaches and Implications
,”
Int. J. Energy Res.
,
23
, pp.
415
429
.
5.
Haught
,
A. F.
,
1984
, “
Physics Considerations of Solar Energy Conversion
,”
ASME J. Sol. Energy Eng.
,
106
, pp.
3
15
.
6.
De Vos
,
A.
, and
Pauwels
,
H.
,
1986
, Discussion,
ASME J. Sol. Energy Eng.
,
108
, pp.
80
84
.
7.
De Vos, A., 1992, Endoreversible Thermodynamics of Solar Energy Conversion, Oxford University Press, Oxford.
8.
De Vos
,
A.
,
1980
, “
Detailed Balance Limit of the Efficiency of Tandem Solar Cells
,”
J. Phys. D
,
13
, pp.
839
846
.
9.
Landsberg, P. T., 2000, “Theoretical Bounds on Solar Cell Efficiencies,” World Renewable Energy Congress VI (WREC 2000), Elsevier Science, Editor: A. M. Sayigh.
10.
Wright
,
S. E.
,
Rosen
,
M. A.
,
Scott
,
D. S.
, and
Haddow
,
J. B.
,
2002
, “
The Exergy Flux of Radiative Heat Transfer for the Special Case of Blackbody Radiation
,”
Exergy, An International Journal
,
2
, pp.
24
33
.
11.
Petela
,
R.
,
1964
, “
Exergy of Heat Radiation
,”
ASME Trans. J. Heat Transfer
,
86
, pp.
187
192
.
12.
Landsberg, P. T., 1984, “Non-Equilibrium Concepts in Solar Energy Conversion,” Proceedings of the NATO Advanced Study Institute on Energy Transfer Processes in Condensed Matter, June 16–30, 1983, Sicily, Italy, edited by B. Di Bartolo, Plenum Press, New York, pp. 537–592.
13.
Karlsson
,
S.
,
1982
, “
Exergy of Incoherent Electromagnetic Radiation
,”
Phys. Scr.
,
26
, pp.
329
332
.
14.
Jeter
,
S.
,
1986
, Discussion,
ASME J. Sol. Energy Eng.
,
108
, p.
78
78
.
15.
Wright
,
S. E.
,
Rosen
,
M. A.
,
Scott
,
D. S.
, and
Haddow
,
J. B.
,
2002
, “
The Exergy Flux of Radiative Heat Transfer with an Arbitrary Spectrum
,”
Exergy, An International Journal
,
2
, pp.
69
77
.
16.
Wright, S. E., Rosen, M. A., Scott, D. S., and Haddow, J. B., 2000, “The Upper Limit to Solar Energy Conversion,” Proceedings of the 35th Intersociety Energy Conversion Engineering Conference (IECEC), Las Vegas, NV, pp. 384–392.
17.
Thekaekara, M. P., 1974, “Data on Incident Solar Energy,” Proceedings of the Symposium on Solar Energy Utilization, Washington, D.C., Institute of Environmental Sciences report #A74-36333, pp. 21–49, Mount Prospect, IL, USA.
18.
Neumann
,
A.
,
Witzke
,
A.
,
Jones
,
S.
, and
Schmitt
,
G.
,
2002
, “
Representative Terrestrial Solar Brightness Profiles
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
198
204
.
19.
Orgill
,
J. F.
, and
Hollands
,
K. T.
,
1977
, “
Correlation Equation for Hourly Diffuse Radiation on a Horizontal Surface
,”
Sol. Energy
,
19
, p.
357
357
.
20.
Wright
,
S. E.
,
Rosen
,
M. A.
,
Scott
,
D. S.
, and
Haddow
,
J. B.
,
2001
, “
On the Entropy of Radiative Heat Transfer in Engineering Thermodynamics
,”
Int. J. Eng. Sci.
,
39
, pp.
1691
1706
.
You do not currently have access to this content.