To further reduce the cost of wind energy, future turbine designs will continue to migrate toward lighter and more flexible structures. Thus, the accuracy and reliability of aerodynamic load prediction has become a primary consideration in turbine design codes. Dynamically stalled flows routinely generated during yawed operation are powerful and potentially destructive, as well as complex and difficult to model. As a prerequisite to aerodynamics model improvements, wind turbine dynamic stall must be characterized in detail and thoroughly understood. The current study analyzed turbine blade surface pressure data and local inflow data acquired by the NREL Unsteady Aerodynamics Experiment during the NASA Ames wind tunnel experiment. Analyses identified and characterized two key dynamic stall processes, vortex initiation and vortex convection, across a broad parameter range. Results showed that both initiation and convection exhibited pronounced three-dimensional kinematics, which responded in systematic fashion to variations in wind speed, turbine yaw angle, and radial location.

1.
Simms
,
D.
,
Schreck
,
S.
,
Hand
,
M.
, and
Fingersh
,
L.
, 2001, “
NREL Unsteady Aerodynamics Experiment in the NASA-Ames Wind Tunnel: A Blind Comparison of Predictions to Measurements
,” NREL/TP-500-29494,
National Renewable Energy Laboratory
, Golden, CO.
2.
McCroskey
,
W. J.
, 1977, “
Some Current Research in Unsteady Fluid Dynamics–The 1976 Freeman Scholar Lecture
,”
J. Fluids Eng.
0098-2202, pp.
8
39
.
3.
Carr
,
L. W.
, 1988, “
Progress in Analysis and Prediction of Dynamic Stall
,”
J. Aircr.
0021-8669,
25
, pp.
6
17
.
4.
Madsen
,
H.
, and
Christensen
,
H.
, 1990, “
On the Relative Importance of Rotational, Unsteady, and Three-Dimensional Effects on the HAWT Rotor Aerodynamics
,”
Wind Eng.
0309-524X,
14
, pp.
405
415
.
5.
Butterfield
,
C.
,
Hansen
,
A.
,
Simms
,
D.
, and
Scott
,
G.
, 1991, “
Dynamic Stall on Wind Turbine Blades
,” NREL/TP-257-4510,
Nat’l Renewable Energy Laboratory
, Golden, CO.
6.
Robinson
,
M.
,
Galbraith
,
R.
,
Shipley
,
D.
, and
Miller
,
M.
, 1995, “
Unsteady Aerodynamics of Wind Turbines
,” AIAA 95-0526, 33rd Aerospace Sciences Meeting and Exhibit.
7.
Brand
,
A.
, and
Montgomerie
,
B.
, 1996, “
Unsteady Aerodynamic Data
,” ECN-C-95-058,
Energy Research Centre of the Netherlands
, Petten, The Netherlands.
8.
Bjorck
,
A.
, and
Thor
,
S.-E.
, 1996, “
Dynamic Stall and 3D Effects
,”
Proceedings of the EUWEC
.
9.
Huyer
,
S.
,
Simms
,
D.
, and
Robinson
,
M.
, 1996, “
Unsteady Aerodynamics Associated with a Horizontal Axis Wind Turbine
,”
AIAA J.
0001-1452,
34
, pp.
1410
1419
.
10.
Freymuth
,
P.
, 1988, “
Three-Dimensional Vortex Systems of Finite Wings
,”
J. Aircr.
0021-8669,
25
, pp.
971
972
.
11.
Robinson
,
M.
, and
Wissler
,
J.
, 1988, “
Unsteady Surface Pressure Measurements on a Pitching Wing
,” AIAA 88-0328, AIAA 26th Aerospace Sciences Meeting.
12.
Lorber
,
P.
,
Carta
,
F.
, and
Covino
,
A.
, 1992, “
An Oscillating Three-Dimensional Wing Experiment: Compressibility, Sweep, Rate, Waveform, and Geometry Effects on Unsteady Separation and Dynamic Stall
,” UTRC Report R92-958325-6.
13.
Schreck
,
S.
,
Addington
,
G.
, and
Luttges
,
M.
, 1991, “
Flow Field Structure and Development Near the Root of a Straight Wing Pitching at Constant Rate
,” AIAA 91-1793, AIAA 22nd Fluid Dynamics, Plasma Dynamics and Lasers Conference.
14.
Schreck
,
S.
, and
Helin
,
H.
, 1994, “
Unsteady Vortex Dynamics and Surface Pressure Topologies on a Finite Pitching Wing
,”
J. Aircr.
0021-8669,
31
, pp.
899
907
.
15.
Schreck
,
S.
, 1989, “
Experimental Investigation of the Mechanisms Underlying Vortex Kinematics in Unsteady Separated Flows
,” (Dissertation) Graduate School, Univ. of Colorado, Boulder, CO.
16.
Horner
,
M.
,
Addington
,
G.
,
Young
,
J.
, and
Luttges
,
M.
, 1990, “
Controlled Three-Dimensionality in Unsteady Separated Flow About a Sinusoidally Oscillating Flat Plate
,” AIAA 90-0689.
17.
Piziali
,
R.
, 1994, “
2-D and 3-D Oscillating Wing Aerodynamics for a Range of Angles of Attack Including Stall
,” NASA TM 4632.
18.
Galbraith
,
R.
,
Coton
,
F.
,
Jiang
,
D.
, and
Gilmour
,
R.
, 1995, “
Preliminary Results from a Three-Dimensional Dynamic Stall Experiment of a Finite Wing
,” Paper No. 2-3, 21st European Rotorcraft Forum.
19.
Coton
,
F.
, and
Galbraith
,
R.
, 1999, “
An Experimental Study of Dynamic Stall on a Finite Wing
,”
Aeronaut. J.
0001-9240,
103
, pp.
229
236
.
20.
Schreck
,
S.
,
Robinson
,
M.
,
Hand
,
M.
, and
Simms
,
D.
, 2000, “
HAWT Dynamic Stall Response Asymmetries under Yawed Flow Conditions
,”
Wind Energy
1095-4244,
3
, pp.
215
232
.
21.
Schreck
,
S.
,
Robinson
,
M.
,
Hand
,
M.
, and
Simms
,
D.
, 2001, “
Blade Dynamic Stall Vortex Kinematics for a Horizontal Axis Wind Turbine in Yawed Conditions
,”
J. Sol. Energy Eng.
0199-6231,
123
, pp.
272
281
.
22.
Butterfield
,
C.
,
Musial
,
W.
, and
Simms
,
D.
, 1992, “
Combined Experiment Phase I Final Report
.” NREL/TP-257-4655,
National Renewable Energy Laboratory
, Golden, CO.
23.
Miller
,
M.
,
Shipley
,
D.
,
Young
,
T.
,
Robinson
,
M.
,
Luttges
,
M.
, and
Simms
,
D.
, 1995, “
Combined Experiment Phase II Data Characterization
.” NREL/TP-442-6916,
National Renewable Energy Laboratory
, Golden, CO.
24.
Fingersh
,
L.
,
Simms
,
D.
,
Butterfield
,
C.
, and
Jenks
,
M.
, 1995, “
An Overview of the Unsteady Aerodynamics Experiment Phase III Data Acquisition System and Instrumentation
,”
ASME Energy and Environment Expo ’95
, Houston, TX.
25.
Simms
,
D.
,
Hand
,
M.
,
Fingersh
,
L.
, and
Jager
,
D.
, 1999, ”
Unsteady Aerodynamics Experiment Phases II-IV Test Configurations and Available Data Campaigns
.” NREL/TP-500-25950,
National Renewable Energy Laboratory
, Golden, CO.
26.
Hand
,
M.
,
Simms
,
D.
,
Fingersh
,
L.
,
Jager
,
D.
,
Cotrell
,
J.
,
Schreck
,
S.
, and
Larwood
,
S.
, 2001, “
Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns
,” NREL/TP-500-29955,
National Renewable Energy Laboratory
, Golden, CO.
27.
Giguere
,
P.
, and
Selig
,
M.
, 1999, ”
Design of a Tapered and Twisted Blade for the NREL Combined Experiment Rotor
,” NREL/SR 500-26173
National Renewable Energy Laboratory
, Golden, CO.
28.
Simms
,
D.
,
Hand
,
M.
,
Fingersh
,
L.
, and
Jager
,
D.
, 1999, “
Unsteady Aerodynamics Experiment Phases II-IV Test Configuration and Available Data Campaigns
,” NREL/TP-500-25950,
National Renewable Energy Laboratory
, Golden, CO.
29.
Shipley
,
D.
,
Miller
,
M.
,
Robinson
,
M.
,
Luttges
,
M.
, and
Simms
,
D.
, 1995, “
Techniques for the Determination of Local Dynamic Pressure and Angle of Attack on a Horizontal Axis Wind Turbine
,” NREL/TP-442-7393,
National Renewable Energy Laboratory
, Golden, CO.
30.
Zell
,
P.
, 1993, “
Performance and Test Section Flow Characteristics of the National Full-Scale Aerodynamics Complex 80- by 120-Foot Wind Tunnel
,” NASA TM 103920.
31.
Walker
,
J.
,
Helin
,
H.
, and
Strickland
,
J.
, 1985, “
An Experimental Investigation of an Airfoil Undergoing Large Amplitude Pitching Motions
,” AIAA 85-0039, AIAA 23rd Aerospace Sciences Meeting.
32.
Lorber
,
P.
, and
Carta
,
F.
, 1987,
Unsteady Stall Penetration Experiments at High Reynolds Number
,” UTRC Report R87-956939-3.
33.
Green
,
R.
,
Galbraith
,
R.
, and
Niven
,
A.
, 1992, “
Measurements of the Dynamic Stall Vortex Convection Speed
,”
Aeronaut. J.
0001-9240,
96
, pp.
319
325
.
34.
Reuss Ramsay
,
R.
,
Hoffman
,
M.
, and
Gregorek
,
G.
, 1995, “
Effects of Grit Roughness and Pitch Oscillations on the S809 Airfoil
,” NREL/TP-442-7817,
National Renewable Energy Laboratory
, Golden, CO.
35.
Schreck
,
S.
, and
Robinson
,
M.
, 2003, “
Boundary Layer State and Flow Field Structure Underlying Rotational Augmentation of Blade Aerodynamic Response
,”
J. Sol. Energy Eng.
0199-6231,
15
, pp.
448
456
.
36.
Schreck
,
S.
, and
Robinson
,
M.
, 2002, “
Rotational Augmentation of Horizontal Axis Wind Turbine Blade Aerodynamic Response
,”
Wind Energy
1095-4244,
5
, pp.
133
150
.
37.
Winkelmann
,
A.
and
Barlow
,
J.
, 1980, “
Flowfield Model for a Rectangular Planform Wing Beyond Stall
,”
AIAA J.
0001-1452,
18
, pp.
1006
1007
.
38.
Schewe
,
G.
, 2001, “
Reynolds-Number Effects in Flow Around More-or-Less Bluff Bodies
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
89
, pp.
1267
1289
.
39.
Prandtl
,
L.
, and
Tietjens
,
O.
, 1957,
Fundamentals of Hydro- and Aeromechanics
,
Dover
, New York, NY, pp.
197
200
.
You do not currently have access to this content.