The structural and thermal feasibility of a self-supporting sandwich panel for energy efficient residential roof applications is assessed. The assessment is limited to symmetric sandwich panels comprising two face sheets and an insulating core. Feasible panel designs are presented for loading conditions, corresponding to southern and northern climates in the United States. The base case panel is 5.5m long for a nominal 4.6m horizontal span and an 812 roof pitch. Face sheet materials considered are oriented strand board, steel, and fiber reinforced plastic. Core materials considered are expanded polystyrene, extruded polystyrene, polyurethane, and poly(vinyl-chloride) foams. A wide range of material options meet building code limits on deflection and weight and prevent face sheet fracture and buckling, and core shear failure. Panels are identified that have structural depths similar to conventional wood rafter construction. Shortening the overall panel length provides greater choice in the use of materials and decreases the required panel thickness. Suggestions for improved panel designs address uncertainty in the ability of the plastic core to withstand long term loading over the expected life of residential buildings.

1.
Rudd
,
A. F.
,
Lstiburek
,
J. W.
, and
Moyer
,
N.
, 1996, “
Measurement of Attic Temperatures and Cooling Energy Use in Vented and Sealed Attics in Las Vegas, Nevada
,”
Excellence in Building Conference, EEBA Excellence, Energy Efficient Building Association
, Minneapolis, MN.
2.
Rudd
,
A. F.
, and
Lstiburek
,
J. W.
, 1998, “
Vented and Sealed Attics in Hot Climates
,”
Proceedings of the 1998 ASHRAE Annual Meeting
, Toronto, Canada, June 21–24,
ASHRAE
,
Atlanta, GA
, pp.
1199
1210
.
3.
Rudd
,
A. F.
,
Lstiburek
,
J. W.
, and
Ueno
,
K.
, 2000, “
Unvented-Cathedralized Attics: Where We’ve Been and Where We’re Going
,”
Proceedings ACEEE Summer Study on Energy Efficiency in Buildings
, Pacific Grove, CA, Vol.
1
, pp.
1247
1259
.
4.
Hendron
,
R.
,
Anderson
,
R.
,
Reeves
,
P.
, and
Hancock
,
E.
, 2002,
Thermal Performance of Unvented Attics in Hot-Dry Climates
,
National Renewable Energy Laboratory
, Golden, CO.
5.
Hendron
,
R.
,
Farrar-Nagy
,
S.
,
Anderson
,
R.
,
Reeves
,
P.
, and
Hancock
,
E.
, 2004, “
Thermal Performance of Unvented Attics in Hot-Dry Climates: Results From Building America
,”
ASME J. Sol. Energy Eng.
0199-6231,
126
, pp.
732
737
.
6.
Desjarlais
,
A. O.
,
Petrie
,
T. W.
, and
Stovall
,
T.
, 2004, “
Comparison of Cathedralized Attics to Conventional Attics: Where and When do Cathedralized Attics Save Energy and Operating Costs?
,”
Performance of Exterior Envelopes of Whole Buildings IX International Conference
, ASHRAE, Clearwater Beach, FL.
7.
Koschade
,
R.
, 2002,
Sandwich Panel Construction
,
Ernst & Sohn
,
Berlin
.
8.
Davies
,
J. M.
, 1987, “
Design Criteria for Structural Sandwich Panels
,”
Struct. Eng.
1466-5123,
65A
(
12
), pp.
435
441
.
9.
Davies
,
J. M.
, 1997, “
Design Criteria for Sandwich Panels for Building Construction
,”
Proceedings of the 1997 ASME International Mechanical Engineering Congress and Exposition
, Dallas, TX, Nov. 16–21,
ASME
,
New Work
, pp.
273
284
.
10.
Davies
,
J. M.
, 2001,
Lightweight Sandwich Construction
,
Blackwell Science
,
Oxford
.
11.
European Convention for Constructional Steelwork (ECCS) Technical Working Group 7.9/International Council for Research and Innovation in Building and Construction (CIB) W056 Joint Committee
, 2000,
European Recommendations for Sandwich Panels: Part I: Design
,
CIB
, Rotterdam.
12.
ICC Evaluation Service
, 2004,
Acceptance Criteria for Sandwich Panels
,
Whittier
, CA.
13.
Kucirka
,
M. J.
, 1989, “
Analysis and Design of Sandwich Panel Residential Roof Systems
,” Civil Engineering, Massachusetts Institute of Technology.
14.
Morse-Fortier
,
L. J.
, 1995, “
Structural Implications of Increased Panel Use in Wood-Frame Buildings
,”
J. Struct. Eng.
0733-9445,
121
(
6
), pp.
995
1003
.
15.
Crowley
,
J.
,
Dentz
,
J.
,
Morse-Fortier
,
L.
, and
Parent
,
M.
, 1993, “
Reinventing Wood Frame Construction: Development of an Innovative Roof Component System
,”
For. Prod. J.
0015-7473,
43
(
7
), pp.
27
35
.
16.
Mullens
,
M. A.
,
Armacost
,
R. L.
,
Swart
,
W. W.
, and
Crowley
,
J.
, 1995, “
Benchmarking the Constructability of Innovative Net Shape Homebuilding Technologies
,”
Housing Sci.
,
19
(
1
), pp.
11
22
.
17.
2003 International Energy Conservation Code
,
International Code Council
, Country Club Hills, IL.
18.
2003 International Residential Code for One- and Two-Family Dwellings
,
International Code Council
, Country Club Hills, IL.
19.
Wood Handbook: Wood as an Engineering Material
, 1999,
Forest Products Laboratory
, U.S. Department of Agriculture, Madison, WI.
20.
MatWeb.com online materials database
, 2004, “
AISI 1020 Steel, Cold Rolled
,” www.matweb.comwww.matweb.com.
21.
GE Plastics
, 2004, “
Noryl Gfn3 Datasheet
,” www.geplastics.com/dsw/index.jspwww.geplastics.com/dsw/index.jsp.
22.
Kaw
,
A. K.
, 1997,
Mechanics of Composite Materials
,
CRC
,
Boca Raton, FL
.
23.
Creative Pultrusions, Inc.
, 2004, “
Material Properties: Pultex Fiber Reinforced Polymer Flat Sheets
,” www.pultrude.com/LitLibrary/properties/metflatsheet.pdfwww.pultrude.com/LitLibrary/properties/metflatsheet.pdf.
24.
DiversiFoam
, 2004, “
Typical Physical Properties of Raylite EPS Insulation
,” www.diversifoam.comwww.diversifoam.com.
25.
Owens Corning
, 2004, “
Submittal Sheet: Foamular 400∕600∕1000
,” www.owenscorning.comwww.owenscorning.com.
26.
Fabian
,
B.
, 2004, “
Owens Corning Foamular Info
,” personal communication.
27.
General Plastics
, 2004, “
Nominal Physical Property Data for Last-a-Foam Fr-7100 Rigid Foam
,” www.diversifoam.comwww.diversifoam.com.
28.
DIAB Inc.
, 2002, “
Divinycell H
,” www.diabgroup.comwww.diabgroup.com.
29.
Gibson
,
L. J.
, and
Ashby
,
M. F.
, 1997,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
Cambridge
.
30.
Just
,
M.
, 1983, “
Ergebnisse Experimenteller Untersuchungen Zum Langzeitverhalten Von Pur-Hartschaumstoff-Stutzkernbauteilen Und Schlussfolgerungen Fur Die Anwendung (The Results of an Experimental Investigation of the Long-Term Behavior of Building Elements Utilizing a Rigid Plastic Foam Core and Conclusions Regarding Their Use)
,”
IfL-Mitt.
,
22
(3), pp.
95
104
.
31.
Kilpelainen
,
T.
, and
Hassinen
,
P.
, 1995, “
Long-Term Behavior and Strength of EPS Foam Sandwich Panels
,”
Nordic Steel Construction Conference
.
32.
Makelainen
,
P.
, and
Holmijoki
,
O.
, 1984,
Shear Strength Characteristics and Shear Creep Modeling of Low Density Rigid Polyurethane Foam
,
Polymer Processing and Properties, Proceedings of the European Meeting
, (
Plenum
,
New York
, June 13-16, 1983), pp.
271
278
.
33.
Taylor
,
S. B.
,
Manbeck
,
H. B.
,
Janowiak
,
J. J.
, and
Hiltunen
,
D. R.
, 1997, “
Modeling Structural Insulated Panel (SIP) Flexural Creep Deflection
,”
J. Struct. Eng.
0733-9445,
123
(
12
), pp.
1658
1665
.
34.
Burkhardt
,
S.
, 2000, “
Short and Longtime Behavior of Sandwich Elements With Water-Blown Cores and Metal Faces
,”
Proceedings of the 5th International Conference on Sandwich Construction
, (
EMAS
,
Zurich
, September 5-7, 2000), pp.
497
511
.
35.
Huang
,
J.-S.
, and
Gibson
,
L. J.
, 1991, “
Creep of Polymer Foams
,”
J. Mater. Sci.
0022-2461,
26
, pp.
637
647
.
36.
Shenoi
,
R. A.
,
Allen
,
H. G.
, and
Clark
,
S. D.
, 1997, “
Cyclic Creep and Creep-Fatigue Interaction in Sandwich Beams
,”
J. Strain Anal. Eng. Des.
0309-3247,
32
(
1
), pp.
1
18
.
37.
Chevalier
,
J. L.
, 1992, “
Creep and Fatigue Properties of End-Grain Balsa and Other Typical Sandwich Cores
,”
Proceedings of the 2nd International Conference on Sandwich Constructions
, (
EMAS
,
Gainesville, FL
, March 9-12), pp.
519
539
.
38.
Gellhorn
,
E. v.
, and
Starlinger
,
A.
, 1995, “
An Efficient Estimation Procedure for Creep Parameters of Structural Foams
,”
Third International Conference on Sandwich Construction
, (
EMAS
,
Southampton, UK
, September 12-15, 1995), pp.
779
788
.
39.
Hartsock
,
J. A.
, 1965, “
Thermal Warp of Composite Panels
,”
J. Cell. Plast.
0021-955X,
1
(
2
), pp.
291
295
.
40.
Zenkert
,
D.
, 1997,
The Handbook of Sandwich Construction
,
EMAS
,
Cradley Heath, UK
.
You do not currently have access to this content.