This paper addresses three-dimensional effects which are pertinent to wind turbine aerodynamics. Two computational models were applied to the National Renewable Energy Laboratory Phase VI Rotor under rotating and parked conditions, a vortex line method using a prescribed wake, and a parallelized coupled Navier-Stokes/vortex-panel solver (PCS). The linking of the spanwise distribution of bound circulation between both models enabled the quantification of three-dimensional effects with PCS. For the rotating turbine under fully attached flow conditions, the effects of the vortex sheet dissipation and replacement by a rolled-up vortex on the computed radial force coefficients were investigated. A quantitative analysis of both radial pumping and Coriolis effect, known as the Himmelskamp effect, was performed for viscous as well as inviscid flow. For the parked turbine, both models were applied at various pitch angles corresponding to fully attached as well as stalled flow. For partially stalled flow, computed results revealed a vortical structure trailing from the blade’s upper surface close to the 40% radial station. This trailing vortex was documented as a highly unsteady flow structure in an earlier detached eddy simulation by another group, however, it was not directly observed experimentally but only inferred. Computed results show very good agreement with measured wind tunnel data for the PCS model. Finally, a new method for extracting three-dimensional airfoil data is proposed that is particularly well suited for highly stalled flow conditions.

1.
Hand
,
M. M.
,
Simms
,
D. A.
,
Fingersh
,
L. J.
,
Jager
,
D. W.
,
Cotrell
,
J. R.
,
Schreck
,
S.
, and
Larwood
,
S. M.
, 2001, “
Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns
,” NREL/TP-500–29955.
2.
Fingersh
,
L. J.
,
Simms
,
D.
,
Hand
,
M.
,
Jager
,
D.
,
Cotrell
,
J.
,
Robinson
,
M.
,
Schreck
,
S.
, and
Larwood
,
S.
, 2001, “
Wind Tunnel Testing of NREL’s Unsteady Aerodynamics Experiment
,” AIAA-2001–0035, pp.
194
200
.
3.
Simms
,
D.
,
Schreck
,
S.
,
Hand
,
M.
, and
Fingersh
,
L. J.
, 2001, “
NREL Unsteady Aerodynamics Experiment in the NASA-Ames Wind Tunnel: A Comparison of Predictions to Measurements
,” NREL/TP-500–29494.
4.
Sorensen
,
N. N.
,
Michelsen
,
J. A.
, and
Schreck
,
S.
, 2002, “
Navier-Stokes Predictions of the NREL Phase VI Rotor in the NASA Ames 80ft×120ft Wind Tunnel
,”
Wind Energy
1095-4244,
5
(
2–3
), pp.
151
169
.
5.
Xu
,
G.
, and
Sankar
,
L.
, 2002, “
Application of a Viscous Flow Methodology to the NREL Phase VI Rotor
,” AIAA-2002–0030.
6.
Benjanirat
,
S.
, and
Sankar
,
L.
, 2003, “
Recent Improvements to a Combined Navier-Stokes/Full-Potential Methodology for Modeling Horizontal Axis Wind Turbines
,” AIAA-2004-0830.
7.
Duque
,
E. P. N.
,
Burklund
,
M. D.
, and
Johnson
,
W.
, 2003, “
Navier-Stokes and Comprehensive Analysis Performance Predictions of the NREL Phase VI Experiment
,”
Sol. Energy
0038-092X,
125
, pp.
457
467
.
8.
Le
Pape
,
A.
, and
Lecanu
,
J.
, 2004, “
3D Navier-Stokes Computations of a Stall-regulated Wind Turbine
,”
Wind Energy
1095-4244,
7
(
4
), pp.
309
324
.
9.
Schmitz
,
S.
, and
Chattot
,
J. J.
, 2005, “
Wind Turbine Blade Aerodynamics of the NREL Phase VI Rotor near Peak Power
,” AIAA-2005-4850.
10.
Schmitz
,
S.
, and
Chattot
,
J. J.
, 2005, “
A Parallelized Coupled Navier-Stokes/Vortex-Panel Solver
,”
Sol. Energy
0038-092X,
127
, pp.
475
487
.
11.
Langtry
,
R. B.
,
Gola
,
J.
, and
Menter
,
F. R.
, 2006, “
Predicting 2D Airfoil and 3D Wind Turbine Rotor Performance using a Transition Model for General CFD Codes
,” AIAA-2006-0395.
12.
Tangler
,
J.
, 2004, “
Insight into Wind Turbine Stall and Post-stall Aerodynamics
,”
Wind Energy
1095-4244,
7
(
3
), pp.
247
260
.
13.
Chattot
,
J. J.
, 2002, “
Design and Analysis of Wind Turbines Using Helicoidal Vortex Model
,”
Comput. Fluid Dyn. J.
0918-6654,
11
(
1
), pp.
50
54
.
14.
Chattot
,
J. J.
, 2004, “
Helicoidal Vortex Model for Steady and Unsteady Flows
,” AIAA-2004-0829;
Chattot
,
J. J.
, 2004, “
Helicoidal Vortex Model for Steady and Unsteady Flows
,”
Comput. Fluids
0045-7930,
35
(
7
), pp.
733
741
.
15.
Gupta
,
S.
, and
Leishman
,
J. G.
, 2005, “
Stall Modeling of a Parked Wind Turbine Blade and Comparison With Experiment
,” AIAA-2005-0771.
16.
Leishman
,
J. G.
, and
Beddoes
,
T. S.
, 1995, “
A Semi-Empirical Model for Dynamic Stall
,”
J. Am. Helicopter Soc.
0002-8711,
117
, pp.
200
204
.
17.
Weissinger
,
J.
, 1947, “
The Lift Distribution of Swept-Back Wings
,” NACA TM 1120.
18.
Johansen
,
J.
, and
Sorensen
,
N. N.
, 2002, “
Detached-Eddy Simulation of Flow around the NREL Phase-VI Blade
,” AIAA-2002-0032.
19.
Sorensen
,
N. N.
, 2000, “
Evaluation of 3D effects from 3D CFD computations
,” IEA Joint Action,
Aerodynamics of Wind Turbines, 14th Symposium
,
S. E.
Thor
, ed., International Energy Agency.
20.
Menter
,
F. R.
, 2001, “
Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows
,” AIAA 2001-0879.
21.
Snel
,
H.
,
Houwink
,
B.
,
Bosschers
,
J.
,
Piers
,
W. J.
, van
Bussel
,
G. J. W.
, and
Bruining
,
A.
, 1993, “
Sectional Prediction of 3-D Effects for Stalled Flow on Rotating Blades and Comparison with Measurements
,”
Proceedings of the European Wind Energy Conference EWEC93
,
A. D.
Garrad
et al.
, eds., Bedford, UK, pp.
395
399
.
22.
Du
,
Z.
, and
Selig
,
M.
, 1998, “
A 3-D Stall-Delay Model for Horizontal Axis Wind Turbine Performance Predictions
,” AIAA-1998-0021.
23.
Chaviaropoulos
,
P. K.
, and
Hansen
,
M. O. L.
, 2000, “
Investigating Three-Dimensional and Rotational Effects on Wind Turbine Blades by Means of a Quasi-3D Navier-Stokes Solver
,”
J. Fluids Eng.
0098-2202,
122
, pp.
330
336
.
24.
van Rooij
,
R.
, and
Schepers
,
J.
, 2005, “
The Effect of Blade Geometry on the Normal Force Distribution of a Rotating Blade
,” AIAA-2005-0777.
25.
Bak
,
C.
,
Fuglsang
,
P.
,
Sorensen
,
N. N.
,
Madsen
,
H. A.
,
Shen
,
W. Z.
, and
Sorensen
,
J. N.
, 1999, “
Airfoil Characteristics for Wind Turbines
,” Riso-R- 1065-(EN), Riso National Laboratory,
Roskilde, Denmark
.
26.
Bjork
,
A.
,
Ronsten
,
G.
, and
Montgomerie
,
B.
, 1995, “
Aerodynamic Section Characteristics of a Rotating and Non-rotating 2.375m Wind Turbine Blade
,” FFA TN 1995–03, FFA, Bromma, Sweden.
27.
Johansen
,
J.
, and
Sorensen
,
N. N.
, 2004, “
Airfoil Characteristics from 3D CFD Rotor Computations
,”
Wind Energy
1095-4244,
7
, pp.
283
294
.
28.
Hansen
,
M. O. L.
,
Sorensen
,
N. N.
,
Sorensen
,
J. N.
, and
Michelsen
,
J. A.
, 1997, “
Extraction of Lift, Drag, and Angle of Attack From Computed 3-D Viscous Flow Around a Rotating Blade
,”
Proceedings of the European Wind Energy Conference EWEC97
,
R.
Watson
, ed., Slane County Meath, Republic of Ireland: Irish Wind Energy Association, Dublin, pp.
499
502
.
29.
Anderson
,
J. D.
, Jr.
, 2001,
Fundamentals of Aerodynamics
, 3rd ed.,
McGraw-Hill
,
New York
, 2001.
30.
Drela
,
M.
, 1989, “
XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils
,”
Low Reynolds Number Aerodynamics
,
T. J.
Mueller
ed.,
Lecture Notes in Engineering No. 54
,
Springer-Verlag
,
Berlin
.
31.
Butterfield
,
C. P.
,
Musial
,
W. P.
, and
Simms
,
D. A.
, 1992, “
Combined Experiment Phase I Final Report
,” NREL/TP-257-4655, Golden, CO.
32.
Grotjans
,
H.
, and
Menter
,
F. R.
, 1998, “
Wall Functions for General Application CFD Codes
,”
ECCOMAS 98 Proceedings of the Fourth European Computational Fluid Dynamics Conference
,
John Wiley and Sons
, New York, pp.
1112
1117
.
33.
CFX-5.7.1 User Manual
, 2005, “
CFX-5 Solver Theory: Basic Solver Capability Theory
,”
CFX ANSYS Inc.
,
Canonsburg PA
, p.
32
.
34.
Himmelskamp
,
H.
, 1950, “
Profiluntersuchungen an Einem Umlaufenden Propeller
,” Diss. Goettingen 1945, Max-Planck-Inst. fuer Stroemungsforschung, Goettingen, Report No. 2.
35.
Schlichting
,
H.
, 1979,
Boundary Layer Theory
,
McGraw-Hill
,
New York
, pp.
694
696
.
36.
Du
,
Z.
, and
Selig
,
M. S.
, 2000, “
The Effect of Rotation on the Boundary Layer of a Wind Turbine Blade
,”
Renewable Energy
0960-1481,
20
, pp.
167
181
.
37.
Schreck
,
S.
, and
Robinson
,
M.
, 2003, “
Boundary Layer State and Flow Field Structure Underlying Rotational Augmentation of Blade Aerodynamic Response
,”
Sol. Energy
0038-092X,
125
, pp.
448
456
.
38.
Schreck
,
S.
, and
Robinson
,
M.
, 2004, “
Tip Speed Ratio Influences on Rotationally Augmented Boundary Layer Topology and Aerodynamic Force Generation
,”
Sol. Energy
0038-092X,
126
, pp.
1025
1033
.
39.
Schreck
,
S.
, and
Robinson
,
M.
, 2005, “
Unsteadiness in HAWT Blade Aerodynamic Forces and Flow Field Structures During Rotational Augmentation
,” AIAA-2005–0776.
You do not currently have access to this content.