In this paper a new technique for parabolic trough mirror alignment based on the use of an innovative theoretical overlay photographic (TOP) approach is described. The technique is a variation on methods used to align mirrors on parabolic dish systems. It involves overlaying theoretical images of the heat collection element (HCE) in the mirrors onto carefully surveyed photographic images and adjustment of mirror alignment until they match. From basic geometric principles, for any given viewer location the theoretical shape and location of the reflected HCE image in the aligned mirrors can be predicted. The TOP approach promises to be practical and straightforward, and inherently aligns the mirrors to the HCE. Alignment of an LS-2 mirror module on the rotating platform at the National Solar Thermal Test Facility (NSTTF) with the TOP technique along with how it might be implemented in a large solar field is described. Comparison of the TOP alignment to the distant observer approach on the NSTTF LS-2 is presented and the governing equations used to draw the theoretical overlays are developed. Alignment uncertainty associated with this technique is predicted to be less than the mirror slope error.

1.
Price
,
H.
,
Lupfert
,
E.
,
Kearney
,
D.
,
Zarza
,
E.
,
Cohen
,
G.
,
Gee
,
R.
, and
Mahoney
,
R.
, 2002, “
Advances in Parabolic Trough Solar Power Technology
,”
ASME J. Sol. Energy Eng.
0199-6231,
105
, pp.
288
293
.
2.
Dudley
,
V. E.
,
Kolb
,
G. J.
,
Sloan
,
M.
, and
Kearney
,
D.
, 1994, “
Test Results SEGS LS-2 Solar Collector
,” SAND94–1884, Sandia National Laboratories, Albuquerque, NM.
3.
Geyer
,
M.
, ed., 2005, “
Solar Power and Chemical Energy Systems Solar PACES
,” Annual Report 2004, Deutsches Zentrum fur Luft-und Raumfahrt, Köln, Germany.
4.
Kistner
,
R.
,
Grethe
,
K.
,
Geyer
,
M.
, and
Nebrera
,
J. A.
, 2004, “
The Progress of the AndaSol Projects in Spain
,”
Proceedings of the 12th Solar PACES International Symposium
,
Oaxaca, Mexico
, October 6–8.
5.
Wendelin
,
T.
, 2004, “
Parabolic Trough Optical Characterization at the National Renewable Energy Laboratory
,”
Proceedings of the DOE Solar Program Review Meeting
,
Golden, CO
, October 25–28, Paper No. DOE∕GO-102005–2067.
6.
Lupfurt
,
E.
,
Pottler
,
K.
,
Ulmer
,
S.
,
Riffelmann
,
K. J.
, and
Schiricke
,
B.
, 2005, “
Parabolic Trough Analysis and Enhancement Techniques
,”
Proceedings of ISES2005 2005 International Solar Energy Conference
,
Orlando, FL
, August 6–12.
7.
Livingston
,
F. R.
, 1985, “
Activity and Accomplishments in Dish∕Stirling Electric Power System Development
,” DOE∕JPL-1060–82, Pasadena, CA.
8.
Selcuk
,
M. K.
, 1995, “
Parabolic Dish Test Site: History and Operating Experience
,” DOE∕JPL-1060-84, Pasadena, CA.
9.
Diver
,
R. B.
,
Carlson
,
D. E. E.
,
Macdonald
,
F. J.
, and
Fletcher
,
E. A.
, 1983, “
A New High-Temperature Solar Research Furnace
,”
ASME J. Sol. Energy Eng.
0199-6231,
105
, pp.
288
293
.
10.
Blackmon
,
J. B.
, and
Stone
,
K. W.
, 1993,
”Application of the Digital Image Radiometer to Optical Measurement and Alignment of Space and Terrestrial Solar Power Systems
,”
Proceedings of the 28th IECEC
,
Atlanta, GA
, August 8–13, Paper No. 93217.
11.
Diver
,
R. B.
, 1992, “
Mirror Alignment Techniques for Point-Focus Solar Concentrators
,” SAND92–0668, Sandia National Laboratories, Albuquerque, NM.
12.
Diver
,
R. B.
, 1995, “
Mirror Alignment and Focus of Point-Focus Solar Concentrators
,”
Solar Engineering 1995: Proceedings of the ASME∕JSME∕JSES International Solar Energy Conference
,
Maui, HI
, March.
13.
Andraka
,
C. E.
,
Diver
,
R. B.
, and
Rawlinson
,
K. S.
, 2003, “
Improved Alignment Technique for Dish Concentrators
,”
International Solar Energy Conference Proceedings
,
Kohala Coast, HI
, March 15–18.
14.
Steffen
,
B. J.
,
Andraka
C. E.
, and
Diver
R. B.
, 2003, “
Development and Characterization of a Color 2F Alignment Method for the Advanced Dish Development System
,”
International Solar Energy Conference Proceedings
, Kohala Coast, HI, March 15–18.
15.
Wood
,
R. L.
, 1981, “
Distant Observer Techniques for Verification of Solar Concentrator Optical Geometry
,” UCRL53220, Lawrence Livermore National Laboratory, Livermore, CA.
16.
Butler
,
B. L.
, and
Pettit
,
R. B.
, 1977, “
Optical Evaluation Techniques for Reflecting Solar Concentrators
,”
Proc. SPIE
0277-786X
144
, pp.
43
49
.
17.
Shortis
,
M. R.
, and
Johnston
,
G.
, 1997, “
Photogrammetry: An Available Surface Characterization Tool for Solar Concentrators, Part II: Assessment of Surfaces
,”
ASME J. Sol. Energy Eng.
0199-6231,
119
, pp.
281
291
.
18.
Moss
,
T. A.
, and
Brosseau
,
D. A.
, 2005, “
Test Result of a Schott HCE Using a LS-2 Collector
,”
Proceedings of ISES2005 2005 International Solar Energy Conference
,
Orlando, FL
, August 6–12.
19.
Diver
,
R. B.
,
Andraka
,
C. E.
,
Rawlinson
,
K. S.
,
Moss
,
T. A.
,
Goldberg
,
V.
, and
Thomas
,
G.
, 2003, “
Status of the Advanced Dish Development System Project
,”
International Solar Energy Conference Proceedings
,
Kohala Coast, HI
, March 15–18.
20.
Duffie
,
J. A.
, and
Beckman
,
W. A.
, 1974,
Solar Energy Thermal Processes
,
Wiley
,
New York
, Chap. 8.
21.
Biggs
,
F.
, and
Vittitoe
,
C. N.
, 1976, “
The Helios Model for the Optical Behavior of Reflecting Solar Concentrators
,” SAND76–0347, Sandia National Laboratories, Albuquerque, NM.
22.
Wendelin
,
T.
, and
Gee
,
R.
, 2004, “
Optical Evaluation of Composite-Based Reflector Facets for Parabolic Trough Concentrators
,”
Proceedings of Solar 2004 Conference
, ISES 04,
Portland OR
, July 11–14.
You do not currently have access to this content.