In the present work, high efficient photovoltaic (PV) cells based on gallium antimonide have been developed and fabricated with the use of the liquid phase epitaxy (LPE) and diffusion from the gas phase techniques. They are intended for conversion of the infrared (IR) part of the solar spectrum into electricity by tandems of mechanically stacked cells and for conversion of the thermal radiation of emitters heated by the sunlight. On the ground of investigation of the LPE temperature regimes and the tellurium doping effect, GaSb PV cells have been fabricated with the efficiency of 6% at the concentration of 300 suns behind the single-junction GaAs top cell and of 5.6% at the same sunlight concentration of the cells behind the dual-junction GaInPGaAs structure, the substrate thickness being 100μm (the efficiency of PV cells was calculated for AM1.5D Low AOD spectrum, 1000Wm2). The rated efficiency of conversion of solar powered tungsten emitter radiation by PV cells based on gallium antimonide in a thermophotovoltaic (TPV) module appeared to be about 19%. Photovoltaic cells based on germanium with a wide-gap GaAs window grown by LPE or metalorganic chemical vapor deposition and with a p-n junction formed by means of the zinc diffusion from the gas phase have been fabricated. Ge based PV cells without a wide-gap GaAs window had the efficiency of up to 8.6% at a concentration of 150 suns. The efficiency of Ge based cells with a wide-gap GaAs window was 10.9% at the concentration of 150 suns. 4.3% efficiency Ge cells behind a single-junction GaAs top cell at the concentration of 400 suns have been also obtained. The maximum rated conversion efficiency of Ge PV cells appeared to be about 12% in the case of conversion of the tungsten emitter thermal radiation. These efficiency values for Ge based cells are among the highest.

1.
Fraas
,
L.
,
Avery
,
J. E.
,
Martin
,
J.
, et al.
, 1990, “
Over 35% Efficient GaAs∕GaSb Tandem Solar Cells
,”
IEEE Trans. Electron Devices
0018-9383,
37
(
2
), pp.
443
448
.
2.
Andreev
,
V. M.
,
Rumyantsev
,
V. D.
,
Karlina
,
L. B.
,
Kazantsev
,
A. B.
,
Khvostikov
,
V. P.
,
Shvarts
,
M. Z.
, and
Sorokina
,
S. V.
, 1995, “
Mechanically Stacked Concentrator Tandem Solar Cells
,” Proc. of the 4th European Space Power Conference, Poitiers, France, 4–8 September 1995, pp.
363
366
.
3.
Bett
,
A. W.
,
Dimroth
,
F.
,
Stollwerck
,
G.
, and
Sulima
,
O. V.
, 1999, “
III-V Compounds for Solar Sell Applications
,”
Appl. Phys. A
0947-8396,
A69
, pp.
119
129
.
4.
Fraas
,
L. M.
,
Avery
,
J. E.
,
Daniels
,
W. E.
,
Huang
,
H. X.
,
Malfa
,
E.
,
Venturino
,
M.
,
Testi
,
G.
,
Mascalzi
,
G.
, and
Wuenning
,
J. G.
, 2002, “
TPV Tube Generators for Apartment Building and Industrial Furnace Applications
,”
AIP Conf. Proc.
0094-243X,
653
, pp.
38
48
.
5.
Andreev
,
V. M.
,
Khvostikov
,
V. P.
,
Rumyantsev
,
V. D.
,
Gazaryan
,
P. Y.
,
Vlasov
,
A. S.
,
Sadchikov
,
N. A.
,
Sorokina
,
S. V.
,
Zadiranov
,
Y. M.
, and
Shvarts
,
M. Z.
, 2005, “
Thermophotovoltaic Converters With Solar Powered High Temperature Emitters
,” 1AP.1.2, Proc. 20th European Photovoltaic Solar Energy Conference, Barcelona, Spain, 6–10 June 2005, pp.
8
13
.
6.
Stringfellow
,
G. B.
, 1974, “
Calculation of Distribution Coefficients of Donors in III-V Semiconductors
,”
J. Phys. Chem. Solids
0022-3697,
35
(
11
), pp.
775
783
.
7.
Khvostikov
,
V. P.
,
Rumyantsev
,
V. D.
,
Khvostikova
,
O. A.
,
Gazaryan
,
P. Y.
,
Sorokina
,
S. V.
,
Potapovich
,
N. S.
,
Shvarts
,
M. Z.
, and
Andreev
,
V. M.
, 2005, “
Narrow Bandgap GaSb and InGaAsSb∕GaSb Based Cells for Mechanically Stacked Tandems and TPV Converters
,” 1DO.9.6, Proc. 20th European Photovoltaic Solar Energy Conference, Barcelona, Spain, 6–10 June 2005, pp.
191
194
.
8.
Luca
,
S.
,
Santailler
,
J. L.
,
Rothman
,
J.
,
Bell
,
J. P.
,
Calvat
,
C.
,
Basset
,
G.
,
Passero
,
A.
,
Khvostikov
,
V. P.
,
Potapovich
,
N. S.
, and
Levin
,
R. V.
, 2007, “
GaSb Crystals and Wafers for Photovoltaic Devices
,”
ASME J. Sol. Energy Eng.
0199-6231,
129
, pp.
304
313
.
9.
Chin
,
V. W. L.
, 1995, “
Electron Mobility in GaSb
,”
Solid-State Electron.
0038-1101,
38
(
1
), pp.
59
67
.
10.
Caughey
,
D. M.
, and
Thomas
,
R. E.
, 1967, “
Carrier Mobilities in Silicon Empirically Related to Doping and Field
,”
Proc. Inst. Electr. Eng.
0020-3270,
55
, pp.
2192
2193
.
11.
Martinm
,
D.
, and
Algora
,
C.
, 2004, “
Temperature-Dependent GaSb Material Parameters for Reliable Thermophotovoltaic Cell Modeling
,”
Semicond. Sci. Technol.
0268-1242,
19
, pp.
1040
1052
.
12.
Khvostikov
,
V. P.
,
Rumyantsev
,
V. D.
,
Khvostikova
,
O. A.
,
Shvarts
,
M. Z.
,
Gazaryan
,
P. Y.
,
Sorokina
,
S. V.
,
Kaluzhniy
,
N. A.
, and
Andreev
,
V. M.
, 2004, “
Thermophotovoltaic Cells Based on Low-Bandgap Compounds
,”
AIP Conf. Proc.
0094-243X,
738
, pp.
436
444
.
13.
Bett
,
A. W.
,
Keser
,
S.
, and
Sulima
,
O. V.
, 1997, “
Study of Zn Diffusion into GaSb from the Vapour and Liquid Phase
,”
J. Cryst. Growth
0022-0248,
181
(
9
), pp.
9
16
.
14.
Andreev
,
V. M.
,
Vlasov
,
A. S.
,
Khvostikov
,
V. P.
,
Khvostikova
,
O. A.
,
Gazaryan
,
P. Y.
, and
Sorokina
,
S. V.
, 2006, “
Solar Thermophotovoltaic Converters
,”
ASME J. Sol. Energy Eng.
0199-6231,
129
, pp.
298
303
.
15.
Boltaks
,
B. I.
, 1963,
Diffusion in Semiconductors
,
Infosearch Ltd.
, London, U.K., Chap. VI, pp.
378
.
16.
Nagashima
,
T.
,
Okumura
,
K.
,
Murata
,
K.
, and
Yamaguchi
,
M.
, 2003, “
A Germanium Back-Contact Type Cell for Thermophotovoltaic Applications
,” 1P-D3-10,
Proc. 3rd World Conference on Photovoltaic Energy Conversion
, Osaka, Japan, 11–18 May 2003.
17.
Bailey
,
S. G.
,
Flood
,
D. J.
,
Brinker
,
D. R.
,
Wheeler
,
D. R.
,
Alterovitz
,
S. A.
, and
Scheiman
,
D.
, 1997, “
Front Surface Engineering of High Efficiency Si Solar Cells and Ge TPV Cells
,”
Proc. 26th IEEE Photovoltaic Specialist Conference
, Anaheim, CA, 29 September–3 October 1997, pp.
847
851
.
18.
Posthuma
,
N. E.
,
van der Heide
,
J.
,
Flamand
,
G.
, and
Poormans
,
J.
, 2004, “
Development of Low Cost Germanium Photovoltaic Cells for Application in TPV Using Spin on Diffusion
,”
AIP Conf. Proc.
0094-243X,
738
, pp.
337
344
.
19.
Wojtczuk
,
S. J.
,
Tobin
,
S. P.
,
Sanfacon
,
M. M.
,
Haven
,
V.
,
Geoffroy
,
L. M.
, and
Vernon
,
S. M.
, 1991, “
Monolithic Two-Terminal GaAs∕Ge Tandem Space Concentrator Cells
,”
Proc. 22nd IEEE Photovoltaic Specialists Conference
, Las Vegas, NV, 7–11 October 1991, pp.
73
79
.
20.
Friedman
,
D. J.
,
Olson
,
J. M.
,
Ward
,
S.
,
Moriarty
,
T.
,
Emery
,
K.
,
Kurtz
,
S.
, and
Duda
,
A.
, 2000, “
Ge Concentrator Cells for III-V Multijunction Devices
,”
Proc. 28th IEEE Photovoltaic Specialists Conference
, Anhorage, AK, 15–22 September 2000, pp.
965
967
.
21.
Friedman
,
D. J.
, and
Olson
,
J. M.
, 2001, “
Analysis of Ge Junctions for GaInP∕GaAs∕Ge Three Junction Solar Cells
,”
Prog. Photovoltaics
1062-7995,
9
, pp.
179
189
.
22.
Andreev
,
V. M.
,
Khvostikov
,
V. P.
,
Kalyuzhny
,
N. A.
,
Titkov
,
S. S.
,
Khvostikova
,
O. A.
, and
Shvarts
,
M. Z.
, 2004, “
GaAs∕Ge Heterostructure Photovoltaic Cells Fabricated by a Combination of MOCVD and Zinc Diffusion Techniques
,”
J. Electron. Mater.
0361-5235,
38
(
3
), pp.
355
359
.
You do not currently have access to this content.