Solar thermochemical processes require the development of a high-temperature solar reactor operating at , such as solar gasification of coal and the thermal reduction of metal oxides as part of a two-step water splitting cycle. Here, we propose to apply “an internally circulating fluidized bed” for a windowed solar chemical reactor in which reacting particles are directly illuminated. The prototype reactor was constructed in a laboratory scale and demonstrated on gasification of coal coke using solar-simulated, concentrated visible light from a sun simulator as the energy source. About 12% of the maximum chemical storage efficiency was obtained by the solar-simulated gasification of the coke.
1.
Gregg
, D.
, Taylor
, R.
, Campbell
, J.
, Taylor
, J.
, and Cotton
, A.
, 1980, “Solar Gasification of Coal, Activated Carbon, Coke and Coal and Biomass Mixtures
,” Sol. Energy
0038-092X, 25
, pp. 353
–364
.2.
Taylor
, R.
, Berjoan
, R.
, and Coutures
, J.
, 1983, “Solar Gasification of Carbonaceous Materials
,” Sol. Energy
0038-092X, 30
(6
), pp. 513
–525
.3.
Epstein
, M.
, Spiewak
, I.
, Funken
, K.
, and Ortner
, J.
, 1994, “Review of the Technology for Solar Gasification of Carbonaceous Materials
,” Proceedings of the Solar Engineering Conference, The ASME/JSME/JSES International Solar Energy Conference
, San Francisco, CA
, pp. 79
–91
.4.
Kodama
, T.
, 2003, “High-Temperature Solar Chemistry for Converting Solar Heat to Chemical Fuels
,” Prog. Energy Combust. Sci.
0360-1285, 29
, pp. 567
–597
.5.
Ben-Zvi
, R.
, and Karni
, J.
, 2007, “Simulation of a Volumetric Solar Reformer
,” ASME J. Sol. Energy Eng.
0199-6231, 129
, pp. 197
–204
.6.
Hunt
, A.
, Ayer
, J.
, Hull
, P.
, Miller
, F.
, Noring
, J.
, and Worth
, D.
, 1986, “Solar Radiant Heating of Gas-Particle Mixtures
,” Lawrence Berkeley Laboratory
, University of California, Berkeley, Report No. LBL-22743.7.
Meier
, A.
, Ganz
, J.
, and Steinfeld A., 1996, “Modeling of a Novel High-Temperature Solar Chemical Reactor
,” Chem. Eng. Sci.
0009-2509, 51
(11
), pp. 2181
–2186
.8.
Miller
, J. F.
, and Koenigsdorff
, R. W.
, 2000, “Thermal Modeling of a Small-Particle Solar Central Receiver
,” ASME J. Sol. Energy Eng.
0199-6231, 122
, pp. 23
–29
.9.
Bertocchi
, R.
, Karni
, J.
, and Kribus
, A.
, 2004, “A High Temperature Solar Particle Receiver
,” ASME J. Sol. Energy Eng.
0199-6231, 126
, p. 826
.10.
Klein
, H. H.
, Rubin
, R.
, and Karni
, J.
, 2006, “Generation of a Radiation Absorbing Medium for a Solar Receiver by Elutriation of Fine Particles From a Spouted Bed
,” ASME J. Sol. Energy Eng.
0199-6231, 128
, pp. 406
–408
.11.
Chen
, H.
, Chen
, Y.
, Hsieh
, H.-T.
, and Siegel
, N.
, 2007, “Computational Fluid Dynamics Modeling of Gas-Particle Flow Within a Solid-Particle Solar Receiver
,” ASME J. Sol. Energy Eng.
0199-6231, 129
, pp. 160
–170
.12.
Z’Graggen
, A.
, Haueter
, P.
, Trommer
, D.
, Romero
, M.
, de Jesus
, J. C.
, and Steinfeld
, A.
, 2006, “Hydrogen Production by Steam-Gasification of Petroleum Coke Using Concentrated Solar Power—II Reactor Design, Testing, and Modeling
,” Int. J. Hydrogen Energy
0360-3199, 31
, pp. 797
–811
.13.
Segal
, A.
, and Epstein
, M.
, 2000, “The Optics of the Solar Tower Reflector
,” Sol. Energy
0038-092X, 69
(Suppl.), pp. 229
–241
.14.
Segal
, A.
, and Epstein
, M.
, 2003, “Solar Ground Reformer
,” Sol. Energy
0038-092X, 75
, pp. 479
–90
.15.
Kodama
, T.
, Kondoh
, Y.
, Tamagawa
, T.
, Funatoh
, A.
, Shimizu
, K.-I.
, Kitayama
, Y.
, 2002, “Fluidized Bed Coal Gasification With CO2 Under Direct Irradiation With Concentrated Visible Light
,” Energy Fuels
0887-0624, 16
, pp. 1264
–1270
.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.