Based on the experimental results of a 300kW solar chemical pilot plant for the production of zinc by carbothermal reduction of ZnO, we performed a conceptual design of a 5MW demonstration plant and of a 30MW commercial plant. Zinc can be used as a fuel for zinc-air batteries and fuel cells, or it can be reacted with water to form high-purity hydrogen. In either case, the chemical product is ZnO, which in turn is solar recycled to zinc. The proposed thermochemical process provides an energy efficient route for the conversion, storage, and transportation of solar energy in the form of solar fuels.

1.
Steinfeld
,
A.
,
Kuhn
,
P.
,
Reller
,
A.
,
Palumbo
,
R.
,
Murray
,
J.
, and
Tamaura
,
Y.
, 1998, “
Solar-Processed Metals as Clean Energy Carriers and Water-Splitters
,”
Int. J. Hydrogen Energy
0360-3199,
23
(
9
), pp.
767
74
.
2.
Berman
,
A.
, and
Epstein
,
M.
, 2000, “
The Kinetics of Hydrogen in the Oxidation of Liquid Zinc With Water Vapor
,”
Int. J. Hydrogen Energy
0360-3199,
25
, pp.
957
967
.
3.
Wegner
,
K.
,
Ly
,
H.
,
Weiss
,
R.
,
Pratsinis
,
S.
, and
Steinfeld
,
A.
, 2006, “
In-Situ Formation and Hydrolysis of Zn Nanoparticles for H2 Production by the 2-Step ZnO∕Zn Water-Splitting Thermochemical Cycle
,”
Int. J. Hydrogen Energy
0360-3199,
31
, pp.
55
61
.
4.
Ernst
,
F.
,
Tricoli
,
A.
,
Steinfeld
,
A.
,
Pratsinis
,
S.
, and
Steinfeld
,
A.
, 2006, “
Co-Synthesis of H2 and ZnO by In-Situ Aerosol Formation and Hydrolysis
,”
AIChE J.
0001-1541,
52
, pp.
3297
3303
.
5.
Murray
,
J.
,
Steinfeld
,
A.
, and
Fletcher
,
E.
, 1995, “
Metals, Nitrides, and Carbides Via Solar Carbothermal Reduction of Metals Oxides
,”
Energy
0360-5442,
20
, pp.
695
704
.
6.
Adinberg
,
R.
, and
Epstein
,
M.
, 2004, “
Experimental Study of Solar Reactors for Carboreduction of Zinc Oxide
,”
Energy
0360-5442,
29
, pp.
757
769
.
7.
Osinga
,
T.
,
Frommherz
,
U.
,
Steinfeld
,
A.
, and
Wieckert
,
C.
, 2004, “
Experimental Investigation of the Solar Carbothermal Reduction of ZnO Using a Two-Cavity Solar Reactor
,”
ASME J. Sol. Energy Eng.
0199-6231,
126
, pp.
633
637
.
8.
Kräupl
,
S.
,
Frommherz
,
U.
, and
Wieckert
,
C.
, 2006, “
Solar Carbothermal Reduction of ZnO in a Two Cavity Reactor: Laboratory Experiments for a Reactor Scale-Up
,”
ASME J. Sol. Energy Eng.
0199-6231,
128
, pp.
8
15
.
9.
Kräupl
,
S.
, and
Steinfeld
,
A.
, 2001, “
Experimental Investigation of a Vortex-Flow Solar Chemical Reactor for the Combined ZnO-Reduction and CH4-Reforming
,”
ASME J. Sol. Energy Eng.
0199-6231,
123
, pp.
237
243
.
10.
Wieckert
,
C.
,
Guillot
,
E.
,
Epstein
,
M.
,
Olalde
,
G.
,
Santén
,
S.
,
Frommherz
,
U.
,
Kräupl
,
S.
,
Osinga
,
T.
, and
Steinfeld
,
A.
, 2007, “
A 300kW Solar Chemical Pilot Plant for the Carbothermal Production of Zinc
,”
ASME J. Sol. Energy Eng.
0199-6231,
129
, pp.
190
196
.
11.
Segal
,
A.
, and
Epstein
,
M.
, 1999, “
Comparative Performances of Tower-Top and Tower-Reflector Central Solar Receivers
,”
Sol. Energy
0038-092X,
65
, pp.
206
226
.
12.
Segal
,
A.
, and
Epstein
,
M.
, 1996, “
A Model for Optimization of a Heliostat Field Layout
,” in
Proceedings of the Eighth International Symposium on Solar Thermal Concentrating Technologies
,
Cologne, Germany
, Oct. 6–11,
Becker
,
M.
, and
Böhmen
,
M.
, eds.,
C.F. Müller Verlag
,
Heidelberg
, pp.
989
998
.
13.
Wieckert
,
C.
,
Epstein
,
M.
,
Olalde
,
G.
,
Santén
,
S.
, and
Steinfeld
,
A.
, 2006, “
Pilot Scale Solar Carbothermal Reduction of ZnO to Zn
,” in
Proceedings Sohn International Symposium on Advanced Processing of Metals and Materials
, Aug. 27–31,
Kongoli
,
F.
, and
Reddy
,
R. G.
, eds.,
The Minerals, Metals and Materials Society
, pp.
221
236
.
14.
Epstein
,
M.
,
Olalde
,
G.
,
Santén
,
S.
,
Steinfeld
,
A.
, and
Wieckert
,
C.
, 2006, “
Solar Thermochemical Production of Hydrogen—The Carbothermal ZnO∕Zn Cyclic Process
,”
Proceedings World Hydrogen Energy Conference
,
Lyon, France
, Jun. 13–16.
You do not currently have access to this content.