An improved engineering design of a solar chemical reactor for the thermal dissociation of ZnO at above 2000K is presented. It features a rotating cavity receiver lined with ZnO particles that are held by centrifugal force. With this arrangement, ZnO is directly exposed to concentrated solar radiation and serves simultaneously the functions of radiant absorber, chemical reactant, and thermal insulator. The multilayer cylindrical cavity is made of sintered ZnO tiles placed on top of a porous 80%Al2O320%SiO2 insulation and reinforced by a 95%Al2O35%Y2O3 ceramic matrix composite, providing mechanical, chemical, and thermal stability and a diffusion barrier for product gases. 3D computational fluid dynamics was employed to determine the optimal flow configuration for an aerodynamic protection of the quartz window against condensable Zn(g). Experimentation was carried out at PSI’s high-flux solar simulator with a 10kW reactor prototype subjected to mean radiative heat fluxes over the aperture exceeding 3000suns (peak 5880suns). The reactor was operated in a transient ablation mode with semicontinuous feed cycles of ZnO particles, characterized by a rate of heat transfer—predominantly by radiation—to the layer of ZnO particles undergoing endothermic dissociation that proceeded faster than the rate of heat transfer—predominantly by conduction—through the cavity walls.

1.
Abanades
,
S.
,
Charvin
,
P.
,
Flamant
,
G.
, and
Neveu
,
P.
, 2006, “
Screening of Water-Splitting Thermochemical Cycles Potentially Attractive for Hydrogen Production by Concentrated Solar Energy
,”
Energy
0360-5442,
31
(
14
), pp.
2805
2822
.
2.
Steinfeld
,
A.
, 2005, “
Solar Thermochemical Production of Hydrogen—A Review
,”
Sol. Energy
0038-092X,
78
(
5
), pp.
603
615
.
3.
Steinfeld
,
A.
, and
Meier
,
A.
, 2004, “
Solar Fuels and Materials
,” in
Encyclopedia of Energy
,
C. J.
Cleveland
, ed.,
Elsevier
,
Amsterdam
, Vol.
5
, pp.
623
637
.
4.
Steinfeld
,
A.
, 2002, “
Solar Hydrogen Production Via a Two-Step Water-Splitting Thermochemical Cycle Based on Zn∕ZnO Redox Reactions
,”
Int. J. Hydrogen Energy
0360-3199,
27
(
6
), pp.
611
619
.
5.
Perkins
,
C.
, and
Weimer
,
A. W.
, 2004, “
Likely Near-Term Solar-Thermal Water Splitting Technologies
,”
Int. J. Hydrogen Energy
0360-3199,
29
(
15
), pp.
1587
1599
.
6.
Wegner
,
K.
,
Ly
,
H. C.
,
Weiss
,
R. J.
,
Pratsinis
,
S. E.
, and
Steinfeld
,
A.
, 2006, “
In Situ Formation and Hydrolysis of Zn Nanoparticles for H2 Production by the 2-Step ZnO∕Zn Water-Splitting Thermochemical Cycle
,”
Int. J. Hydrogen Energy
0360-3199,
31
(
1
), pp.
55
61
.
7.
Ernst
,
F. O.
,
Tricoli
,
A.
,
Pratsinis
,
S. E.
, and
Steinfeld
,
A.
, 2006, “
Co-Synthesis of H2 and ZnO by In-Situ Zn Aerosol Formation and Hydrolysis
,”
AIChE J.
0001-1541,
52
(
9
), pp.
3297
3303
.
8.
Haueter
,
P.
,
Möller
,
S.
,
Palumbo
,
R. D.
, and
Steinfeld
,
A.
, 1999, “
The Production of Zinc by Thermal Dissociation of Zinc Oxide—Solar Chemical Reactor Design
,”
Sol. Energy
0038-092X,
67
, pp.
161
167
.
9.
Müller
,
R.
,
Haeberling
,
P.
, and
Palumbo
,
R. D.
, 2006, “
Further Advances Toward the Development of a Direct Heating Solar Thermal Chemical Reactor for the Thermal Dissociation of ZnO(s)
,”
Sol. Energy
0038-092X,
80
(
5
), pp.
500
511
.
10.
Müller
,
R.
, 2005, “
Reaktor-Entwicklung für die Solar Thermische Produktion von Zink
,” Ph.D. thesis, ETH Zürich, Switzerland.
11.
Olorunyolemi
,
T.
,
Birnboim
,
A.
,
Carmel
,
Y.
,
Wilson
,
O. C.
, and
Lloyd
,
I. K.
, 2002, “
Thermal Conductivity of Zinc Oxide: From Green to Sintered State
,”
J. Am. Ceram. Soc.
0002-7820,
85
(
5
), pp.
1249
1253
.
12.
Clevinger
,
M. A.
,
Hill
,
K. M.
, and
Cedeno
,
C. L.
, 1995,
Phase Equilibria Diagrams: Phase Diagrams for Ceramists: 1995 Cumulative Indexes: Volumes 1-11, Annuals ’91-’93, High Tc Monograph
,
The American Ceramic Society
,
Westerville, OH
.
14.
Kogan
,
A.
, and
Kogan
,
M.
, 2002, “
The Tornado Flow Configuration—An Effective Method for Screening of a Solar Reactor Window
,”
ASME J. Sol. Energy Eng.
0199-6231,
124
(
3
), pp.
206
214
.
15.
Grunert
,
K.
, 2000, “
Untersuchungen zur Turbulenzmodellierung und Berechnung verdrallter Innenströmungen
,” Ph.D. thesis, Technische Universität Berlin, Germany.
16.
Petrasch
,
J.
,
Coray
,
P.
,
Meier
,
A.
,
Brack
,
M.
,
Haeberling
,
P.
,
Wuillemin
,
D.
, and
Steinfeld
,
A.
, 2007, “
A 50-kW 11,000-suns Novel High-Flux Solar Simulator Based on an Array of Xenon Arc Lamps
,”
ASME J. Sol. Energy Eng.
0199-6231,
129
(
4
), pp.
405
411
.
17.
Möller
,
S.
, and
Palumbo
,
R. D.
, 2001, “
Solar Thermal Decomposition Kinetics of ZnO in the Temperature Range 1950–2400K
,”
Chem. Eng. Sci.
0009-2509,
56
(
15
), pp.
4505
4515
.
18.
Weidenkaff
,
A.
,
Steinfeld
,
A.
,
Wokaun
,
A.
,
Auer
,
P.
,
Eichler
,
B.
, and
Reller
,
A.
, 1999, “
Direct Solar Thermal Dissociation of Zinc Oxide: Condensation and Crystallisation of Zinc in the Presence of Oxygen
,”
Sol. Energy
0038-092X,
65
(
1
), pp.
59
69
.
19.
Keunecke
,
M.
, 2004, “
Die solarthermische Dissoziation von Zinkoxid
,” Ph.D. thesis, Universität Augsburg, Germany.
You do not currently have access to this content.