In this work, the influence of the reactor configuration and the characteristics of the catalysts on the photodegradation of trichloroethylene (TCE) vapors are studied under sunlight illumination. The photocatalytic activity tests were carried out using two types of continuous flow reactors: (i) a compound parabolic collector (CPC) and (ii) a simple flat reactor. Three different photocatalysts based on TiO2 were utilized: (i) commercial powders calcined at 500°C (ii) a TiO2xNx sample synthesized by treating the commercial sample at 500°C in an NH3 gas flow, and (iii) TiO2 thin film coatings on differently shaped borosilicate glass supports prepared by a sol-gel procedure. The obtained data reveal that the photonic efficiency for the removal of TCE is quite high but slightly decreases with increasing the light intensity. The commercial TiO2 sample presents the highest efficiency while nitrogen doping seems to be slightly detrimental for photoactivity, despite the fact that certain photoresponse in the visible can be envisaged. In contrast, transparent sol-gel TiO2 coatings present the highest TCE degradation rate per mass of catalyst. Regarding the type of reactor, it is found that the use of CPCs can be advantageous, especially when dealing with high volumes of effluent and elevated concentration of TCE, although flat reactor also shows a considerable efficiency.

1.
Romero
,
M.
,
Blanco
,
J.
,
Sánchez
,
B.
,
Vidal
,
A.
,
Malato
,
S.
,
Cardona
,
A. I.
, and
García
,
E.
, 1999, “
Solar Photocatalytic Degradation of Water and Air Pollutants: Challenges and Perspectives
,”
Sol. Energy
0038-092X,
66
(
2
), pp.
169
182
.
2.
Malato
,
S.
,
Blanco
,
J.
,
Vidal
,
A.
, and
Richter
,
C.
, 2002, “
Photocatalysis With Solar Energy at a Pilot-Plant Scale: An Overview
,”
Appl. Catal., B
0926-3373,
37
, pp.
1
15
.
3.
Malato
,
S.
,
Blanco
,
J.
,
Maldonado
,
M. I.
,
Fernández-Ibañez
,
P.
,
Alarcón
,
D.
,
Collares Pereira
,
M.
,
Farinha Mendes
,
J.
, and
Correia de Oliveira
,
J.
, 2004, “
Engineering of Solar Photocatalytic Collectors
,”
Sol. Energy
0038-092X,
77
, pp.
513
524
.
4.
Ohko
,
Y.
,
Fujishima
,
A.
, and
Hashimoto
,
K.
, 1998, “
Kinetic Analysis of the Photocatalytic Degradation of Gas-Phase 2-Propanol under Mass Transport-Limited Conditions With a TiO2 Film Photocatalyst
,”
J. Phys. Chem. B
1089-5647,
102
, pp.
1724
1729
.
5.
Bahnemann
,
D. W.
, 2004, “
Photocatalytic Water Treatment: Solar Energy Applications
,”
Sol. Energy
0038-092X,
77
, pp.
445
459
.
6.
Leung
,
M. K. H.
,
Tang
,
S. M.
,
Lam
,
R. C. W.
,
Leung
,
D. Y. C.
,
Yam
,
W. C.
,
Ng
,
S. P.
, and
Vrijmoed
,
L. L. P.
, 2006, “
Parallel-Plate Solar Photocatalytic Reactor for Air Purification: Semi-Empirical Correlation, Modeling, and Optimization
,”
Sol. Energy
0038-092X,
80
, pp.
945
955
.
7.
Ching
,
W. H.
,
Leung
,
M.
, and
Leung
,
D. Y. C.
, 2004, “
Solar Photocatalytic Degradation of Gaseous Formaldehyde by Sol-Gel TiO2 Thin Film for Enhancement of Indoor Air Quality
,”
Sol. Energy
0038-092X,
77
, pp.
129
135
.
8.
Cardona
,
A. I.
,
Sanchez
,
B.
,
Romero
,
M.
,
Fabrellas
,
B.
,
Garcia
,
E.
,
Blanco
,
J.
,
Avila
,
P.
, and
Bahamonde
,
A.
, 2002, “
Solarized Photoreactors for Degradation of Chlorinated Organics in Air
,”
J. Phys. IV
1155-4339,
9
(
P3
), pp.
271
276
.
9.
Zhao
,
J. C.
,
Chen
,
C. C.
, and
Ma
,
W. H.
, 2005, “
Photocatalytic Degradation of Organic Pollutants Under Visible Light Irradiation
,”
Top. Catal.
1022-5528,
35
(
3–4
), pp.
269
278
.
10.
Liu
,
Z. Q.
, and
Ge
,
C. C.
, 2006, “
Photocatalysis of Nonmetal Modified TiO2 Induced by Visible Light
,”
Prog. Chem.
,
18
(
2–3
), pp.
168
175
.
11.
Asahi
,
R.
,
Morikawa
,
T.
,
Ohwaki
,
T.
,
Aoki
,
K.
, and
Taga
,
Y.
, 2001, “
Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides
,”
Science
0036-8075,
293
(
5528
), pp.
269
271
.
12.
Kuroda
,
Y.
,
Mori
,
T.
,
Yagi
,
K.
,
Makihata
,
N.
,
Kawahara
,
Y.
,
Nagao
,
M.
, and
Kittaka
,
S.
, 2005, “
Preparation of Visible-Light-Responsive TiO2−xNx Photocatalyst by A Sol-Gel Method: Analysis of the Active Center on TiO2 That Reacts With NH3,
Langmuir
0743-7463,
21
(
17
), pp.
8026
8034
.
13.
Wong
,
M. S.
,
Chou
,
H. P.
, and
Yang
,
T. S.
, 2006, “
Reactively Sputtered N-Doped Titanium Oxide Films as Visible-Light Photocatalyst
,”
Thin Solid Films
0040-6090,
494
, pp.
244
249
.
14.
Hernández-Alonso
,
M. D.
,
Tejedor-Tejedor
,
I.
,
Coronado
,
J. M.
,
Soria
,
J.
,
Anderson
,
M. A.
, 2006, “
Sol-Gel Preparation of TiO2‐ZrO2 Thin Films Supported on Glass Rings: Influence of Phase Composition on Photocatalytic Activity
,”
Thin Solid Films
0040-6090,
502
, pp.
125
131
.
15.
Colón
,
G.
,
Hidalgo
,
M. C.
,
Munuera
,
G.
,
Ferino
,
I.
,
Cutrufello
,
M. G.
, and
Navío
,
J. A.
, 2006, “
Structural and Surface Approach to the Enhanced Photocatalytic Activity of Sulfated TiO2 Photocatalyst
,”
Appl. Catal., B
0926-3373,
63
, pp.
45
59
.
16.
Jacoby
,
W. A.
,
Nimlos
,
M. R.
,
Blake
,
D. M.
,
Noble
,
R. D.
, and
Koval
,
C. A.
, 1994, “
Products, Intermediates, Mass Balances, and Reaction Pathways for the Oxidation of Trichloroethylene in Air Via Heterogeneous Photocatalysis
,”
Environ. Sci. Technol.
0013-936X,
28
(
9
), pp.
1661
1668
.
17.
Ihara
,
T.
,
Miyoshi
,
M.
,
Iriyama
,
Y.
,
Matsumoto
,
O.
, and
Sugihara
,
S.
, 2003, “
Visible-Light-Active Titanium Oxide Photocatalyst Realized by an Oxygen-Deficient Structure and by Nitrogen Doping
,”
Appl. Catal., B
0926-3373,
42
, pp.
403
409
.
You do not currently have access to this content.