Distributed maximum power point tracking (DMPPT) is one of the most promising solutions to overcome the drawbacks associated with mismatching phenomena in photovoltaic (PV) applications. DMPPT is based on the adoption of a dc/dc converter dedicated to each PV module. The design of the power stage of such a converter is a challenging task because of the very high efficiency requirements and of the continuous changes of the operating point during the day, depending on the sun irradiation conditions. In this paper the guidelines for the design of dc-dc converters for DMPPT applications are presented and discussed.
Issue Section:
Research Papers
1.
Petrone
, G.
, Spagnuolo
, G.
, and Vitelli
, M.
, 2007, “Analytical Model of Mismatched Photovoltaic Fields by Means of Lambert W-Function
,” Sol. Energy Mater. Sol. Cells
0927-0248, 91
(18
), pp. 1652
–1657
.2.
Femia
, N.
, Lisi
, G.
, Petrone
, G.
, Spagnuolo
, G.
, and Vitelli
, M.
, 2008, “Distributed Maximum Power Point Tracking of Photovoltaic Arrays: Novel Approach and System Analysis
,” IEEE Trans. Ind. Electron.
0278-0046, 55
(7
), pp. 2610
–2621
.3.
Powers
, M. J.
, and Sullivan
, C. R.
, 1993, “A High-Efficiency Maximum Power Point Tracker for Photovoltaic Arrays in a Solar-Powered Race Vehicle
,” IEEE Paper No. PESC-1993.4.
Walker
, G. R.
, and Sernia
, P. C.
, 2004, “Cascaded dc-dc Converter Connection of Photovoltaic Modules
,” IEEE Trans. Power Electron.
0885-8993, 19
, pp. 1130
–1139
.5.
Roman
, E.
, Alonso
, R.
, Ibanez
, P.
, Goitia
, D.
, and Elorduizapatarietxe
, S.
, 2006, “Intelligent PV Module for Grid-Connected PV Systems
,” IEEE Trans. Ind. Electron.
0278-0046, 53
(4
), pp. 1066
–1073
.6.
Xiao
, W.
, Ozog
, N.
, and Dunford
, W. G.
, 2007, “Topology Study of Photovoltaic Interface for Maximum Power Point Tracking
,” IEEE Trans. Ind. Electron.
0278-0046, 54
, pp. 1696
–1704
.7.
Masoum
, M. A. S.
, Dehbonei
, H.
, and Fuchs
, E. F.
, 2002, “Theoretical and Experimental Analyses of Photovoltaic Systems With Voltage- and Current-Based Maximum Power Point Tracking
,” IEEE Trans. Energy Convers.
0885-8969, 17
(4
), pp. 514
–522
.8.
Masoum
, M. A. S.
, Dehbonei
, H.
, and Fuchs
, E. F.
, 2004, “Closure of “Theoretical and Experimental Analyses of Photovoltaic Systems with Voltage- and Current-Based Maximum Power Point Tracking”
,” IEEE Trans. Energy Convers.
0885-8969, 19
(3
), pp. 652
–653
.9.
SolarEdge Technologies Inc.
, http://www.solaredge.com/http://www.solaredge.com/10.
Erickson
, R. W.
, and Maksimovic
, D.
, 2001, Fundamentals of Power Electronics
, Kluver
, Norwell, MA
.11.
Garcia
, N.
, “Determining Inductor Power Losses
,” Application Note Coilcraft, www.coilcraft.comwww.coilcraft.com12.
Power Design Cookbook, www.national.comwww.national.com
13.
Klein
, J.
, “Synchronous Buck MOSFET Loss Calculations With Excel Model
,” Fairchild Semiconductor Application Note 6005, www.fairchildsemi.comwww.fairchildsemi.com14.
Petrone
, G.
, Spagnuolo
, G.
, Teodorescu
, R.
, Veerachary
, M.
, and Vitelli
, M.
, 2008, “Reliability Issues in Photovoltaic Power Processing Systems
,” IEEE Trans. Ind. Electron.
0278-0046, 55
(7
), pp. 2569
–2580
.15.
Ristow
, A.
, Begovic
, M.
, Pregelj
, A.
, and Rohatgi
, A.
, 2008, “Development of a Methodology for Improving Photovoltaic Inverter Reliability
,” IEEE Trans. Ind. Electron.
0278-0046, 55
(7
), pp. 2581
–2592
.16.
1995, “
Reliability Prediction of Electronic Equipment MIL-HDBK-217F
,” Military Handbook, www.defenselink.milwww.defenselink.mil17.
Richard
, Y.
, “Reliability Prediction Method for Electronic Systems: A Comparative Reliability Assessment Method
,” U.S. Government Work, www.defenselink.milwww.defenselink.mil18.
Deb
, K.
, 2002, Multi-Objective Optimization Using Evolutionary Algorithms
, Wiley
, New York
.Copyright © 2010
by American Society of Mechanical Engineers
You do not currently have access to this content.