Distributed maximum power point tracking (DMPPT) is one of the most promising solutions to overcome the drawbacks associated with mismatching phenomena in photovoltaic (PV) applications. DMPPT is based on the adoption of a dc/dc converter dedicated to each PV module. The design of the power stage of such a converter is a challenging task because of the very high efficiency requirements and of the continuous changes of the operating point during the day, depending on the sun irradiation conditions. In this paper the guidelines for the design of dc-dc converters for DMPPT applications are presented and discussed.

1.
Petrone
,
G.
,
Spagnuolo
,
G.
, and
Vitelli
,
M.
, 2007, “
Analytical Model of Mismatched Photovoltaic Fields by Means of Lambert W-Function
,”
Sol. Energy Mater. Sol. Cells
0927-0248,
91
(
18
), pp.
1652
1657
.
2.
Femia
,
N.
,
Lisi
,
G.
,
Petrone
,
G.
,
Spagnuolo
,
G.
, and
Vitelli
,
M.
, 2008, “
Distributed Maximum Power Point Tracking of Photovoltaic Arrays: Novel Approach and System Analysis
,”
IEEE Trans. Ind. Electron.
0278-0046,
55
(
7
), pp.
2610
2621
.
3.
Powers
,
M. J.
, and
Sullivan
,
C. R.
, 1993, “
A High-Efficiency Maximum Power Point Tracker for Photovoltaic Arrays in a Solar-Powered Race Vehicle
,” IEEE Paper No. PESC-1993.
4.
Walker
,
G. R.
, and
Sernia
,
P. C.
, 2004, “
Cascaded dc-dc Converter Connection of Photovoltaic Modules
,”
IEEE Trans. Power Electron.
0885-8993,
19
, pp.
1130
1139
.
5.
Roman
,
E.
,
Alonso
,
R.
,
Ibanez
,
P.
,
Goitia
,
D.
, and
Elorduizapatarietxe
,
S.
, 2006, “
Intelligent PV Module for Grid-Connected PV Systems
,”
IEEE Trans. Ind. Electron.
0278-0046,
53
(
4
), pp.
1066
1073
.
6.
Xiao
,
W.
,
Ozog
,
N.
, and
Dunford
,
W. G.
, 2007, “
Topology Study of Photovoltaic Interface for Maximum Power Point Tracking
,”
IEEE Trans. Ind. Electron.
0278-0046,
54
, pp.
1696
1704
.
7.
Masoum
,
M. A. S.
,
Dehbonei
,
H.
, and
Fuchs
,
E. F.
, 2002, “
Theoretical and Experimental Analyses of Photovoltaic Systems With Voltage- and Current-Based Maximum Power Point Tracking
,”
IEEE Trans. Energy Convers.
0885-8969,
17
(
4
), pp.
514
522
.
8.
Masoum
,
M. A. S.
,
Dehbonei
,
H.
, and
Fuchs
,
E. F.
, 2004, “
Closure of “Theoretical and Experimental Analyses of Photovoltaic Systems with Voltage- and Current-Based Maximum Power Point Tracking”
,”
IEEE Trans. Energy Convers.
0885-8969,
19
(
3
), pp.
652
653
.
10.
Erickson
,
R. W.
, and
Maksimovic
,
D.
, 2001,
Fundamentals of Power Electronics
,
Kluver
,
Norwell, MA
.
11.
Garcia
,
N.
, “
Determining Inductor Power Losses
,” Application Note Coilcraft, www.coilcraft.comwww.coilcraft.com
12.
Power Design Cookbook, www.national.comwww.national.com
13.
Klein
,
J.
, “
Synchronous Buck MOSFET Loss Calculations With Excel Model
,” Fairchild Semiconductor Application Note 6005, www.fairchildsemi.comwww.fairchildsemi.com
14.
Petrone
,
G.
,
Spagnuolo
,
G.
,
Teodorescu
,
R.
,
Veerachary
,
M.
, and
Vitelli
,
M.
, 2008, “
Reliability Issues in Photovoltaic Power Processing Systems
,”
IEEE Trans. Ind. Electron.
0278-0046,
55
(
7
), pp.
2569
2580
.
15.
Ristow
,
A.
,
Begovic
,
M.
,
Pregelj
,
A.
, and
Rohatgi
,
A.
, 2008, “
Development of a Methodology for Improving Photovoltaic Inverter Reliability
,”
IEEE Trans. Ind. Electron.
0278-0046,
55
(
7
), pp.
2581
2592
.
16.
1995, “
Reliability Prediction of Electronic Equipment MIL-HDBK-217F
,” Military Handbook, www.defenselink.milwww.defenselink.mil
17.
Richard
,
Y.
, “
Reliability Prediction Method for Electronic Systems: A Comparative Reliability Assessment Method
,” U.S. Government Work, www.defenselink.milwww.defenselink.mil
18.
Deb
,
K.
, 2002,
Multi-Objective Optimization Using Evolutionary Algorithms
,
Wiley
,
New York
.
You do not currently have access to this content.