A prototype direct absorption central receiver, called the solid particle receiver (SPR), was built and evaluated on-sun at power levels up to 2.5MWth at Sandia National Laboratories in Albuquerque, NM. The SPR consists of a 6 m tall cavity through which spherical sintered bauxite particles are dropped and directly heated with concentrated solar energy. In principle, the particles can be efficiently heated to a temperature in excess of 900°C, well beyond the stability limit of existing nitrate salt formulations. The heated particles may then be stored in a way analogous to nitrate salt systems, enabling a dispatchable thermal input to power or fuel production cycles. The focus of this current effort was to provide an experimental basis for the validation of computational models that have been created to support improved designs and further development of the solid particle receiver. In this paper, we present information on the design and construction of the solid particle receiver and discuss the development of a computational fluid dynamics model of the prototype. We also present experimental data and model comparisons for on-sun testing of the receiver over a range of input power levels from 1.582.51MWth. Model validation is performed using a number of metrics including particle velocity, exit temperature, and receiver efficiency. In most cases, the difference between the model predictions and data is less than 10%.

1.
Solar Hydrogen Generation Research (SHGR) Project
,” http://shgr.unlv.edu/v2/http://shgr.unlv.edu/v2/
2.
Kolb
,
G. J.
,
Diver
,
R.
, and
Siegel
,
N.
, 2007, “
Central Station Solar Hydrogen Power Plant
,”
ASME J. Sol. Energy Eng.
0199-6231,
129
, pp.
179
183
.
3.
Kolb
,
G. J.
, and
Diver
,
R. B.
, 2008, “
Screening Analysis of Solar Thermochemical Hydrogen Concepts
,” Sandia National Laboratories Paper No. SAND2008-1900.
4.
Wright
,
S. A.
,
Fuller
,
R.
,
Pickard
,
P. S.
, and
Vernon
,
M. E.
, 2008, “
Initial Status and Test Results From a Supercritical CO2 Brayton Cycle Test Loop
,”
Proceedings of the ICAPP 2008
, Anaheim, CA, Paper No. 8266.
5.
Westinghouse Electric Corporation
, 1982, “
Solar Thermal Hydrogen Production Process
,” Report No. DOE/ET/20608-1.
6.
Abanades
,
S.
,
Chavrin
,
P.
,
Flamant
,
G.
, and
Neveu
,
P.
, 2006, “
Screening of Water-Splitting Thermochemical Cycles Potentially Attractive for Hydrogen Production by Concentrated Solar Energy
,”
Energy
0360-5442,
31
(
14
), pp.
2805
2822
.
7.
Diver
,
R. B.
,
Siegel
,
N. P.
,
Allendorf
,
M. D.
,
Hogan
,
R. E.
, and
Miller
,
J. E.
, 2006, “
Solar Thermochemical Water-Splitting Ferrite-Cycle Heat Engines
,”
Proceedings of the ISEC 2006
, ASME, Paper No. ISEC2006-99147.
8.
Brown
,
L. C.
,
Besenbruch
,
G. E.
,
Lentsch
,
R. D.
,
Schultz
,
K. R.
,
Funk
,
J. F.
,
Pickard
,
P. S.
,
Marshall
,
A. C.
, and
Showalter
,
S. K.
, 2003, “
High Efficiency Generation of Hydrogen Fuels Using Nuclear Power
,” General Atomics Final Technical Report No. GA-A24285.
9.
Martin
,
J.
, and
Vitko
,
J.
, 1982, “
ASCUAS: A Solar Central Receiver Utilizing a Solid Thermal Carrier
,” Sandia National Laboratories Paper No. SAND82-8203.
10.
Carbo HSP specs retrieved from www.carboceramics.comwww.carboceramics.com
11.
Hruby
,
J. M.
, 1986, “
A Technical Feasibility Study of a Solid Particle Solar Central Receiver for High Temperature Applications
,” Sandia National Laboratories Paper No. SAND 86-8211.
12.
Steinfeld
,
A.
,
Imhof
,
A.
, and
Mischler
,
D.
, 1992, “
Experimental Investigation of an Atmospheric-Open Cyclone Solar Reactor for Solid-Gas Thermochemical Reactions
,”
ASME J. Sol. Energy Eng.
0199-6231,
114
, pp.
171
174
.
13.
Z’Graggen
,
A.
,
Haueter
,
P.
,
Trommer
,
D.
,
Romero
,
M.
,
de Jesus
,
J. C.
, and
Steinfeld
,
A.
, 2006, “
Hydrogen Production by Steam-Gasification of Petroleum Coke Using Concentrated Solar Power—II Reactor Design, Testing, and Modelling
,”
Int. J. Hydrogen Energy
0360-3199,
31
, pp.
797
811
.
14.
Klein
,
H. H.
,
Karni
,
J.
,
Ben-Zvi
,
R.
, and
Bertocchi
,
R.
, 2007, “
Heat Transfer in a Directly Irradiated Solar Receiver/Reactor for Solid-Gas Reactions
,”
Sol. Energy
0038-092X,
81
(
10
), pp.
1227
1239
.
15.
Stahl
,
K. A.
,
Griffin
,
J. W.
,
Matson
,
B. S.
, and
Pettit
,
R. B.
, 1986, “
Optical Characterization of Solid Particle Solar Central Receiver Materials
,” Sandia National Laboratories Paper No. SAND 85-1215.
16.
Hruby
,
J. M.
,
Steeper
,
R. R.
,
Evans
,
G. H.
, and
Crowe
,
C. T.
, 1986, “
An Experimental and Numerical Study of Flow and Convective Heat Transfer in a Freely Falling Curtain of Particles
,” Sandia National Laboratories Paper No. SAND 86-8714.
17.
Evans
,
G. H.
,
Houf
,
W. G.
,
Greif
,
R.
, and
Crowe
,
C.
, 1985, “
Numerical Modeling of a Solid Particle Solar Central Receiver
,” Sandia National Laboratories Paper No. SAND85-8249.
18.
Falcone
,
P. K.
,
Noring
,
J. E.
, and
Hruby
,
J. M.
, 1985, “
Assessment of a Solid Particle Receiver for a High Temperature Solar Central Receiver System
,” Sandia National Laboratories Paper No. SAND85-8208.
19.
Ho
,
C. K.
,
Khalsa
,
S. S.
, and
Siegel
,
N. P.
, 2009, “
Modeling On-Sun Tests of a Prototype Solid Particle Receiver for Concentrating Solar Power Processes and Storage
,”
ASME
Paper No. ES2009-90035.
20.
Chen
,
H.
,
Chen
,
Y.
,
Hsieh
,
H. -T.
, and
Siegel
,
N.
, 2007, “
Computational Fluid Dynamics Modeling of Gas-Particle Flow Within a Solid Particle Solar Receiver
,”
ASME J. Sol. Energy Eng.
0199-6231,
129
(
2
), pp.
160
170
.
21.
HD specs retrieved from www.unifrax.comwww.unifrax.com
23.
Hellmann
,
J. R.
, and
McConnell
,
V. S.
, 1986, “
Characterization of Spherical Ceramic Particles for Solar Thermal Transfer Media: A Market Survey
,” Sandia National Laboratories Paper No. SAND 86-1873.
24.
Siegel
,
N. P.
,
Kolb
,
G.
,
Kim
,
K.
,
Rangaswamy
,
V.
, and
Moujaes
,
S.
, 2007, “
Solid Particle Receiver Flow Characterization Studies
,”
ASME
Paper No. ES2007-36118.
25.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 1985,
Introduction to Heat Transfer
,
Wiley
,
New York
.
26.
Fluent Inc.
, 2006,
FLUENT 6.3 User’s Guide
,
Fluent Inc.
,
Lebanon, NH
.
27.
Shih
,
T. -H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
, 1995, “
A New k-ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows—Model Development and Validation
,”
Comput. Fluids
0045-7930,
24
(
3
), pp.
227
238
.
28.
Kistler
,
B. L.
, 1986, “
A User’s Manual for DELSOL3: A Computer Code for Calculating the Optical Performance and Optimal System Design for Solar Thermal Central Receiver Plants
,” Sandia National Laboratories Paper No. SAND86-8018.
You do not currently have access to this content.