A windowed internally circulating fluidized bed reactor was tested using m-ZrO2-supported NiFe2O4(NiFe2O4/m-ZrO2) particles as redox material for thermochemical two-step water splitting to produce hydrogen from water. The internally circulating fluidized bed of NiFe2O4/m-ZrO2 particles is directly heated by solar-simulated Xe light irradiation through a transparent quartz window mounted on top of the reactor. A sun simulator with three Xe lamps at laboratory scale has been newly installed in our laboratory for testing the fluidized bed reactor. The input power of incident Xe light can be scaled up to 2.6kWth. Temperature distributions within the fluidized bed are measured under concentrated Xe light irradiation with an input power of 2.6kWth. Hydrogen productivity and reactivity for the fluidized bed of NiFe2O4/m-ZrO2 particles are examined using two different reactors under the N2 flow rate and flow ratio, which yield a higher bed temperature. The feasibility of successive two-step water splitting using the fluidized bed reactor is examined by switching from N2 gas flow in the thermal reduction step to a steam/N2 gas mixture in the water decomposition step. It is confirmed that hydrogen production takes place in the single fluidized bed reactor by successive two-step water splitting.

1.
Steinfeld
,
A.
, 2005, “
Solar Thermochemical Production of Hydrogen—A Review
,”
Sol. Energy
0038-092X,
78
, pp.
603
615
.
2.
Funk
,
J. E.
, 2001, “
Thermochemical Hydrogen Production: Past and Present
,”
Int. J. Hydrogen Energy
0360-3199,
26
, pp.
185
190
.
3.
Kodama
,
T.
, 2003, “
High-Temperature Solar Chemistry for Converting Solar Heat to Chemical Fuels
,”
Prog. Energy Combust. Sci.
0360-1285,
29
, pp.
567
597
.
4.
Muradov
,
N. Z.
, and
Veziroglu
,
T. N.
, 2008, “
“Green” Path From Fossil-Based to Hydrogen Economy: An Overview of Carbon-Neutral Technologies
,”
Int. J. Hydrogen Energy
0360-3199,
33
, pp.
6804
6839
.
5.
Fletcher
,
E. A.
, 1983, “
On the Thermodynamics of Solar Energy Use
,”
Journal of the Minnesota Academy of Science
,
49
(
2
), pp.
30
34
.
6.
Steinfeld
,
A.
, and
Schubnell
,
M.
, 1993, “
Optimum Aperture Size and Operating Temperature of a Solar Cavity-Receiver
,”
Sol. Energy
0038-092X,
50
(
1
), pp.
19
25
.
7.
Nakamura
,
T.
, 1977, “
Hydrogen Production From Water Utilizing Solar Heat at High Temperatures
,”
Sol. Energy
0038-092X,
19
, pp.
467
75
.
8.
Ihara
,
S.
, 1978, “
Feasibility of Hydrogen Next Term Production by Direct Water Splitting at High Temperature
,”
Int. J. Hydrogen Energy
0360-3199,
3
(
3
), pp.
287
296
.
9.
Ihara
,
S.
, 1980, “
On the Study of Hydrogen Production From Water Using Solar Thermal Energy
,”
Int. J. Hydrogen Energy
0360-3199,
5
, pp.
527
534
.
10.
Diver
,
R.
, and
Fletcher
,
E.
, 1979, “
Hydrogen and Oxygen From Water—II: Some Considerations in the Reduction of the Idea to Practice
,”
Energy
0360-5442,
4
(
6
), pp.
1139
1150
.
11.
Diver
,
R. B.
,
Pederson
,
S.
,
Kappauf
,
T.
, and
Fletcher
,
E. A.
, 1983, “
Hydrogen and Oxygen From Water—VI. Quenching the Effluent From a Solar Furnace
,”
Energy
0360-5442,
8
(
12
), pp.
947
955
.
12.
Kogan
,
A.
, 1998, “
Direct Solar Thermal Splitting of Water and On-Site Separation of the Products. II. Experimental Feasibility Study
,”
Int. J. Hydrogen Energy
0360-3199,
23
, pp.
89
98
.
13.
Lédé
,
J.
,
Villemaux
,
J.
,
Ouzane
,
R.
,
Hossain
,
M. A.
, and
Ouahes
,
R.
, 1987, “
Production of Hydrogen by Simple Impingement of a Turbulent Jet of Steam Upon a High Temperature Zirconia Surface
,”
Int. J. Hydrogen Energy
0360-3199,
12
, pp.
3
11
.
14.
Olalde
,
G.
,
Gauthier
,
D.
, and
Vialaron
,
A.
, 1988, “
Film Boiling Around a Zirconia Target. Application to Water Thermolysis
,”
Adv. Ceram.
0730-9546,
24
, pp.
879
883
.
15.
Bilgen
,
E.
, and
Joels
,
R.
, 1985, “
An Assessment of Solar Hydrogen Production Using the Mark 13 Hybrid Process
,”
Int. J. Hydrogen Energy
0360-3199,
10
(
3
), pp.
143
155
.
16.
Aochi
,
A.
,
Tadokoro
,
T.
,
Yoshida
,
K.
,
Kameyama
,
H.
,
Nobue
,
M.
, and
Yamaguchi
,
T.
, 1989, “
Economical and Technical Evaluation of UT-3 Thermochemical Hydrogen Production Process for an Industrial Scale Plant
,”
Int. J. Hydrogen Energy
0360-3199,
14
(
7
), pp.
421
429
.
17.
Onuki
,
K.
,
Shimizu
,
S.
,
Nakajima
,
H.
,
Fujita
,
S.
,
Ikezoe
,
Y.
,
Sato
,
S.
, and
Machi
,
S.
, 1990, “
Studies on an Iodine-Sulfur Process for Thermochemical Hydrogen Production
,”
Proceedings of the Eighth World Hydrogen Energy Conference
, Vol.
2
, pp.
547
556
.
18.
Sakurai
,
M.
,
Bilgen
,
E.
,
Tsutsumi
,
A.
, and
Yoshida
,
K.
, 1996, “
Solar UT-3 Thermochemical Cycle for Hydrogen Production
,”
Sol. Energy
0038-092X,
57
(
1
), pp.
51
58
.
19.
Lundberg
,
M.
, 1993, “
Model Calculations on Some Feasible Two-Step Water Splitting Processes
,”
Int. J. Hydrogen Energy
0360-3199,
18
(
5
), pp.
369
76
.
20.
Bilgen
,
E.
,
Ducarroir
,
M.
,
Foex
,
M.
,
Sibieude
,
F.
, and
Trombe
,
F.
, 1977, “
Use of Solar Energy for Direct and Two-Step Water Decomposition Cycles
,”
Int. J. Hydrogen Energy
0360-3199,
2
, pp.
251
257
.
21.
Abanades
,
S.
,
Charvin
,
P.
,
Flamant
,
G.
, and
Neveu
,
P.
, 2006, “
Screening of Water-Splitting Thermochemical Cycles Potentially Attractive for Hydrogen Production by Concentrated Solar Energy
,”
Energy
0360-5442,
31
(
14
), pp.
2805
2822
.
22.
Sibieude
,
F.
,
Ducarroir
,
M.
,
Tofighi
,
A.
, and
Ambriz
,
J.
, 1982, “
High-Temperature Experiments With a Solar Furnace: The Decomposition of Fe3O4, Mn3O4, CdO
,”
Int. J. Hydrogen Energy
0360-3199,
7
(
1
), pp.
79
88
.
23.
Steinfeld
,
A.
,
Kuhn
,
P.
,
Reller
,
A.
,
Palumbo
,
R.
,
Murray
,
J.
, and
Tamaura
,
Y.
, 1998, “
Solar-Processed Metals as Clean Energy Carriers and Water-Splitters
,”
Int. J. Hydrogen Energy
0360-3199,
23
(
9
), pp.
767
774
.
24.
Ehrensberger
,
K.
,
Frei
,
A.
,
Kuhn
,
P.
,
Oswald
,
H.
, and
Hug
,
P.
, 1995, “
Comparative Experimental Investigations of the Water-Splitting Reaction With Iron Oxide Fe1−yO and Iron Manganese Oxides (Fe1−xMnx)1−yO
,”
Solid State Ionics
0167-2738,
78
, pp.
151
160
.
25.
Ehrensberger
,
K.
,
Kuhn
,
P.
,
Shklover
,
V.
, and
Oswald
,
H.
, 1996, “
Temporary Phase Segregation Processes During the Oxidation of (Fe0.7Mn0.3)0.99O in N2–H2O Atmosphere
,”
Solid State Ionics
0167-2738,
90
, pp.
75
81
.
26.
Tamaura
,
T.
,
Steinfeld
,
A.
,
Kuhn
,
P.
, and
Ehrensberger
,
K.
, 1995, “
Production of Solar Hydrogen by a Novel, 2-Step, Water-Splitting Thermochemical Cycle
,”
Energy
0360-5442,
20
(
4
), pp.
325
330
.
27.
Kaneko
,
H.
,
Miura
,
T.
,
Ishihara
,
H.
,
Taku
,
S.
,
Yokoyama
,
T.
,
Nakajima
,
H.
, and
Tamaura
,
Y.
, 2007, “
Reactive Ceramics of CeO2–MOx (M=Mn, Fe, Ni, Cu) for H2 Generation by Two-Step Water Splitting Using Concentrated Solar Thermal Energy
,”
Energy
0360-5442,
32
(
5
), pp.
656
663
.
28.
Allendorf
,
M. D.
,
Diver
,
R. B.
,
Siegel
,
N. P.
, and
Miller
,
J. E.
, 2008, “
Two-Step Water Splitting Using Mixed-Metal Ferrites: Thermodynamic Analysis and Characterization of Synthesized Materials
,”
Energy Fuels
0887-0624,
22
(
6
), pp.
4115
4124
.
29.
Kodama
,
T.
,
Kondoh
,
Y.
,
Kiyama
,
A.
, and
Shimizu
,
K. -I.
, “
Hydrogen Production by Solar Thermochemical Water-Splitting/Methane-Reforming Process
,”
ASME
Paper No. ISEC2003-44037.
30.
Kodama
,
T.
,
Kondoh
,
Y.
,
Yamamoto
,
R.
,
Andou
,
H.
, and
Satoh
,
N.
, 2005, “
Thermochemical Hydrogen Production by a Redox System of ZrO2-Supported Co(II)-Ferrite
,”
Sol. Energy
0038-092X,
78
, pp.
623
631
.
31.
Kodama
,
T.
,
Gokon
,
N.
, and
Yamamoto
,
R.
, 2008, “
Thermochemical Two-Step Water Splitting by ZrO2-Supported NixFe3−xO4 for Solar Hydrogen Production
,”
Sol. Energy
0038-092X,
82
, pp.
73
79
.
32.
Gokon
,
N.
,
Murayama
,
H.
,
Nagasaki
,
A.
, and
Kodama
,
T.
, 2009, “
Thermochemical Two-Step Water Splitting Cycles by Monoclinic ZrO2-Supported NiFe2O4 and Fe3O4 Powders And Ceramic Foam Devices
,”
Sol. Energy
0038-092X,
83
(
4
), pp.
527
537
.
33.
Gokon
,
N.
,
Murayama
,
H.
,
Umeda
,
J.
,
Hatamachi
,
T.
, and
Kodama
,
T.
, 2009, “
Monoclinic Zirconia Supported Fe3O4 for Two-Step Water-Splitting Thermochemical Cycle at Thermal Reduction Temperatures of 1400–1600°C
,”
Int. J. Hydrogen Energy
0360-3199,
34
(
3
), pp.
1208
1217
.
34.
Kodama
,
T.
, and
Gokon
,
N.
, 2007, “
Thermochemical Cycles for High-Temperature Solar Hydrogen Production
,”
Chem. Rev. (Washington, D.C.)
0009-2665,
107
, pp.
4048
4077
.
35.
Kodama
,
T.
,
Nakamuro
,
Y.
, and
Mizuno
,
T.
, 2006, “
A Two-Step Thermochemical Water Splitting by Iron-Oxide on Stabilized Zirconia
,”
ASME J. Sol. Energy Eng.
0199-6231,
128
(
1
), pp.
3
7
.
36.
Gokon
,
N.
,
Mizuno
,
T.
,
Nakamuro
,
Y.
, and
Kodama
,
T.
, 2008, “
Iron-Containing YSZ (Yttrium-Stabilized Zirconia) System for a Two-Step Thermochemical Water Splitting
,”
ASME J. Sol. Energy Eng.
0199-6231,
130
(
1
), pp.
011018
-1–011018-
6
.
37.
Gokon
,
N.
,
Hasegawa
,
T.
,
Takahashi
,
S.
, and
Kodama
,
T.
, 2008, “
Thermochemical Two-Step Water-Splitting for Hydrogen Production Using Fe-YSZ Particles and a Ceramic Foam Device
,”
Energy
0360-5442,
33
, pp.
1407
1416
.
38.
Kodama
,
T.
,
Hiraiwa
,
E.
, and
Gokon
,
N.
, 2008, “
Reactivity of Iron-Containing YSZ for a Two-Step Thermochemical Water-Splitting Using Thermal Reduction Temperatures of 1400–1500°C
,”
ASME
Paper No. ES2008-54151.
39.
Ishihara
,
H.
,
Kaneko
,
H.
,
Hasegawa
,
N.
, and
Tamaura
,
Y.
, 2008, “
Two-Step Water-Splitting at 1273–1623 K Using Yttria-Stabilized Zirconia-Iron Oxide Solid Solution Via Co-Precipitation and Solid-State Reaction
,”
Energy
0360-5442,
33
(
12
), pp.
1788
1793
.
40.
Agrafiotis
,
C.
,
Roeb
,
M.
,
Konstandopoulos
,
A. G.
,
Nalbandian
,
L.
,
Zaspalis
,
V. T.
,
Sattler
,
C.
,
Stobbe
,
P.
,
Steele
,
A. M.
, 2005, “
Solar Water Splitting for Hydrogen Production With Monolithic Reactors
,”
Sol. Energy
0038-092X,
79
, pp.
409
421
.
41.
Roeb
,
M.
,
Sattler
,
C.
,
Klüser
,
R.
,
Monnerie
,
N.
,
Oliveira
,
L.
,
Konstandopoulos
,
A. G.
,
Agrafiotis
,
C.
Zaspalis
,
V. T.
,
Nalbandian
,
L.
,
Steele
,
A.
, and
Stobbe
,
P.
, 2006, “
Solar Hydrogen Production by a Two-Step Cycle Based on Mixed Iron Oxides
,”
ASME J. Sol. Energy Eng.
0199-6231,
128
, pp.
125
133
.
42.
Roeb
,
M.
,
Säck
,
J. P.
,
Rietbrock
,
P.
,
Neises
,
M.
,
Ebert
,
M.
,
Reinalter
,
W.
,
Schmitz
,
M.
,
Sattler
,
C.
,
Lorentzou
,
S.
,
Pagkoura
,
C.
,
Zygogianni
,
A.
,
Agrafiotis
,
C.
,
Konstandopoulos
,
A. G.
,
Stobbe
,
P.
,
Jones
,
D.
,
Steele
,
A.
,
Lopez
,
A.
, and
Romero
,
M.
, 2008, “
Development and Verification of a Two-Step Thermochemical Process for Solar Hydrogen Production From Water
,”
14th Biennial CSP SolarPACES Symposium
, Las Vegas, NV, Mar. 4–7.
43.
Roeb
,
M.
,
Neises
,
M.
,
Säck
,
J. -P.
,
Rietbrock
,
P.
,
Monnerie
,
N.
,
Dersch
,
J.
,
Schmitz
,
M.
, and
Sattler
,
C.
, 2009, “
Operational Strategy of a Two-Step Thermochemical Process for Solar Hydrogen Production
,”
Int. J. Hydrogen Energy
0360-3199,
34
(
10
), pp.
4537
4545
.
44.
Diver
,
R. B.
,
Millar
,
J. E.
,
Allendorf
,
M. D.
,
Siegel
,
N. P.
, and
Hogan
,
R. E.
, 2006, “
Solar Thermochemical Water-Splitting Ferrite-Cycle Heat Engines
,”
ASME
Paper No. ISEC200-99147.
45.
Diver
,
R. B.
,
Siegel
,
N. P.
,
Miller
,
J. E.
,
Moss
,
T. A.
,
Stuecker
,
J. N.
, and
James
,
D. L.
, 2008, “
Development of a CR5 Solar Thermochemical Heat Engine Prototype
,”
14th Biennial CSP SolarPACES Symposium
, Las Vegas, NV, Mar. 4–7.
46.
Kaneko
,
H.
,
Miura
,
T.
,
Fuse
,
A.
,
Ishihara
,
H.
,
Taku
,
S.
,
Fukuzumi
,
H.
,
Naganuma
,
Y.
, and
Tamaura
,
Y.
, 2007, “
Rotary-Type Solar Reactor for Solar Hydrogen Production With Two-Step Water Splitting Process
,”
Energy Fuels
0887-0624,
21
(
4
), pp.
2287
2293
.
47.
Kaneko
,
H.
,
Fukuzumi
,
H.
,
Ishihara
,
H.
,
Taku
,
S.
,
Naganuma
,
Y.
,
Hasegawa
,
N.
, and
Tamaura
,
Y.
, 2008, “
Development of Rotary-Type Solar Reactor for Solar H2 Production With Two-Step Water Splitting Reaction
,”
14th Biennial CSP SolarPACES Symposium
, Las Vegas, NV, Mar. 4–7.
48.
Gokon
,
N.
,
Takahashi
,
S.
,
Yamamoto
,
H.
, and
Kodama
,
T.
, 2008, “
Thermochemical Two-Step Water-Splitting Reactor With Internally Circulating Fluidized Bed for Thermal Reduction of Ferrite Particles
,”
Int. J. Hydrogen Energy
0360-3199,
33
, pp.
2189
2199
.
49.
Kodama
,
T.
,
Enomoto
,
S.
,
Hatamachi
,
T.
, and
Gokon
,
N.
, 2008, “
Application of an Internally Circulating Fluidized Bed for Windowed Solar Chemical Reactor With Direct Irradiation of Reacting Particles
,”
ASME J. Sol. Energy Eng.
0199-6231,
130
, p.
014504
.
50.
Gokon
,
N.
,
Takahashi
,
S.
,
Yamamoto
,
H.
, and
Kodama
,
T.
, 2009, “
New Solar Water-Splitting Reactor With Ferrite Particles in an Internally Circulating Fluidized Bed
,”
ASME J. Sol. Energy Eng.
0199-6231,
131
, p.
011007
.
51.
Segal
,
A.
, and
Epstein
,
M.
, 2001, “
The Optics of the Solar Tower Reflector
,”
Sol. Energy
0038-092X,
69
, pp.
229
241
.
52.
Segal
,
A.
, and
Epstein
,
M.
, 2003, “
Solar Ground Reformer
,”
Sol. Energy
0038-092X,
75
, pp.
479
490
.
53.
Tamaura
,
Y.
,
Utamura
,
M.
,
Kaneko
,
H.
,
Hasuike
,
H.
,
Doming
,
M.
, and
Rellso
,
S.
, 2006, “
A Novel Beam-Down System for Solar Power Generation With Multi-Ring Central Reflectors and Molten Salt Thermal Storage
,”
13th International Symposium on Concentrated Solar Power and Chemical Energy Technologies
, Seville Spain.
54.
Abe
,
M.
,
Tanno
,
Y.
, and
Tamaura
,
Y.
, 1985, “
Direct Formation of Ferrite Film in Wet Process
,”
J. Appl. Phys.
0021-8979,
57
(
1
), pp.
3795
3797
.
55.
Tamaura
,
Y.
,
Abe
,
M.
, and
Itoh
,
T.
, 1987, “
Magnetic Thin Film Formation Reaction of Ferrite in Aqueous Solution
,”
J. Chem. Soc. Jpn.
,
11
, pp.
1980
1987
.
56.
Heller
,
P.
,
Pfander
,
M.
,
Denk
,
T.
,
Tellez
,
F.
,
Valverde
,
A.
,
Fernandez
,
J.
, and
Ring
,
A.
, 2004, “
Test and Evaluation of a Solar Powered Gas Turbine System
,”
12th International Symposium on Concentrated Solar Power and Chemical Energy Technologies
, Oaxaca, Mexico.
You do not currently have access to this content.